Avances en el desarrollo de una vacuna efectiva contra Cryptosporidium parvum: una revisión de la literatura

Palabras clave: Cryptosporidium parvum, vacunas sintéticas, vacunas de ADN, inmunogenicidad, antígeno CP15

Resumen

Introducción. Cryptosporidium parvum es un parásito zoonótico altamente prevalente, asociado a enfermedad diarreica en población inmunocomprometida, niños y terneros menores de 30 días. Esta infección puede ocasionar deshidratación, alteración del estado de conciencia, retraso en el desarrollo global y, en algunos casos, la muerte del paciente. A pesar de la alta prevalencia de C. parvum, no existen medicamentos completamente efectivos ni una vacuna aprobada para prevenir dicha enfermedad. Objetivo. Realizar una revisión de la literatura sobre candidatos vacunales contra C. parvum. Método. Revisión documental mediante la búsqueda de la literatura de los últimos 20 años, disponible en las bases de datos PubMed central, WEB OF SCIENCE, Embase, REDALYC y LILACS. Resultados. Las vacunas atenuadas, recombinantes, basadas en ADN, expresadas en vectores bacterianos y sintéticas han mostrado resultados prometedores en la inducción de inmunogenicidad contra los antígenos de C. parvum, siendo el antígeno de superficie de 15 kilodaltons de Cryptosporidium parvum (cp15), el antígeno inductor de una mejor respuesta inmune celular y humoral en el modelo murino estudiado. Conclusión. Se espera que la incorporación de nuevas técnicas para la selección de antígenos promisorios y la ejecución de una gran cantidad de ensayos in vivo, favorezcan el desarrollo de una vacuna totalmente efectiva contra C. parvum. Aunque el camino para lograr este objetivo será largo y difícil, se convierte en la mejor alternativa para controlar una de las enfermedades de interés en salud pública, con mayor impacto en la población inmunocomprometida.

Descargas

La descarga de datos todavía no está disponible.

Citas

Striepen B. Parasitic infections: Time to tackle cryptosporidiosis. Nature. 2013;503(7475):189–91. https://doi.org/10.1038/503189a

Korpe PS, Valencia C, Haque R, Mahfuz M, McGrath M, Houpt E, et al. Epidemiology and Risk Factors for Cryptosporidiosis in Children From 8 Low-income Sites: Results From the MAL-ED Study. Clinical Infectious Diseases. 2018;67:1660–9. https://doi.org/10.1093/cid/ciy355

Tomazic ML, Maidana J, Dominguez M, Uriarte EL, Galarza R, Garro C, et al. Molecular characterization of Cryptosporidium isolates from calves in Argentina. Vet Parasitol. 2013;198(3–4):382–6. https://doi.org/10.1016/j.vetpar.2013.09.022

Chalmers RM, Davies AP, Tyler K. Cryptosporidium. Microbiology. 2019;165(5):500–2. https://doi.org/10.1099/mic.0.000764

Abubakar I, Aliyu SH, Arumugam C, Usman NK, Hunter PR. Treatment of cryptosporidiosis in immunocompromised individuals: systematic review and meta-analysis. Br J Clin Pharmacol. 2007;63(4):387–93. https://doi.org/10.1111/j.1365-2125.2007.02873.x

Hossain MJ, Saha D, Antonio M, Nasrin D, Blackwelder WC, Ikumapayi UN, et al. Cryptosporidium infection in rural gambian children: Epidemiology and risk factors. PLoS Negl Trop Dis. 2019;13(7):e0007607. https://dx.doi.org/10.1371/journal.pntd.0007607

Leitch GJ, He Q. Cryptosporidiosis-an overview. J Biomed Res. 2012;25(1):1–16. https://doi.org/10.1016/S1674-8301(11)60001-8

Dumaine JE, Tandel J, Striepen B. Cryptosporidium parvum. Trends in Parasitology. 2019. https://doi.org/10.1016/j.pt.2019.11.003.

Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004-2010. Water Res. 2011;45(20):6603–14. https://doi.org/10.1016/j.watres.2011.10.013

Gallas-Lindemann C, Sotiriadou I, Plutzer J, Noack MJ, Mahmoudi MR, Karanis P. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP). Acta Trop. 2016;158:43–51. https://doi.org/10.1016/j.actatropica.2016.02.005

Lippuner C, Ramakrishnan C, Basso WU, Schmid MW, Okoniewski M, Smith NC, et al. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. Int J Parasitol. 2018;48(6):413–22. https://doi.org/10.1016/j.ijpara.2017.10.007

Carey CM, Lee H, Trevors JT. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. Water Res. 2004;38(4):818–62. https://doi.org/10.1016/j.watres.2003.10.012

Borowski H, Thompson RCA, Armstrong T, Clode PL. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology. 2010;137(1):13–26. https://doi.org/10.1017/S0031182009990837

Pulido-Medellín MO, Andrade-Becerra RJ, Rodríguez-Vivas RI, Garcia-Corredor DJ. Prevalencia y posibles factores de riesgo en la excreción de ooquistes de Cryptosporidium spp en bovinos de Boyacá, Colombia. Revista Mexicana de Ciencias Pecuarias. 2015;5(3):357–64.

Eze UU, Ezeh IO, Nzeakor TA, Attama SC, Ezenduka EV, Onah DN. Prevalence and risk factors associated with Cryptosporidium spp. infection in local breed of dogs in Enugu State, Nigeria. Vet World. 2019;12(5):729–34. https://dx.doi.org/10.14202/vetworld.2019.729-734

Hastutiek P, Yuniarti WM, Djaeri M, Lastuti NDR, Suprihati E, Suwanti LT. Prevalence and diversity of gastrointestinal protozoa in Madura cattle at Bangkalan Regency, East Java, Indonesia. Vet World. 2019;12(2):198–204. https://dx.doi.org/10.14202/vetworld.2019.198-204

Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–22. https://doi.org/10.1016/S0140-6736(13)60844-2

Rossle NF, Latif B. Cryptosporidiosis as threatening health problem: A review. Asian Pacific Journal of Tropical Biomedicine. 2013;3(11):916–24. https://dx.doi.org/10.1016/S2221-1691(13)60179-3

Vanathy K, Parija SC, Mandal J, Hamide A, Krishnamurthy S. Cryptosporidiosis: A mini review. Trop Parasitol. 2017;7(2):72–80. https://doi.org/10.4103/tp.TP_25_17

Attili SVS, Gulati AK, Singh VP, Varma DV, Rai M, Sundar S. Diarrhea, CD4 counts and enteric infections in a hospital - based cohort of HIV-infected patients around Varanasi, India. BMC Infect Dis. 2006;6(39):1–8. https://doi.org/10.1186/1471-2334-6-39

Dwivedi KK, Prasad G, Saini S, Mahajan S, Lal S, Baveja UK. Enteric opportunistic parasites among HIV infected individuals: associated risk factors and immune status. Jpn J Infect Dis. 2007;60(2–3):76–81.

Muthusamy D, Rao SS, Ramani S, Monica B, Banerjee I, Abraham OC, et al. Multilocus genotyping of Cryptosporidium sp. isolates from human immunodeficiency virus-infected individuals in South India. J Clin Microbiol. 2006;44(2):632–4. https://doi.org/10.1128/JCM.44.2.632-634.2006

Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther. 2018;16(8):655–61. https://doi.org/10.1080/14787210.2018.1500457

Tzipori S, Widmer G. A hundred-year retrospective on cryptosporidiosis. Trends Parasitol. 2008;24(4):184–9. https://dx.doi.org/10.1016/j.pt.2008.01.002

Darlan DM, Rozi MF, Andriyani Y, Yulfi H, Saragih RH, Nerdy N. Cryptosporidium Sp. Findings and Its Symptomatology among Immunocompromised Patients. Open Access Maced J Med Sci. 2019;7(10):1567–71. https://doi.org/10.3889/oamjms.2019.329

Ehigiator HN, Mcnair N, Mead JR. IL-12 Knockout C57BL/6 Mice are Protected from Re-infection with Cryptosporidium parvum after Challenge. J Eukaryot Microbiol. 2003;50(s1):539–41. https://doi.org/10.1111/j.1550-7408.2003.tb00622.x

Yu JR, Park WY. The effect of gamma-irradiation on the viability of Cryptosporidium parvum. J Parasitol. 2003;89(3):639–42. https://doi.org/10.1645/0022-3395(2003)089[0639:TEOIOT]2.0.CO;2

Jenkins M, Higgins J, Kniel K, Trout J, Fayer R. Protection of calves against cryptosporiosis by oral inoculation with gamma-irradiated Cryptosporidium parvum oocysts. J Parasitol. 2004;90(5):1178–80. https://doi.org/10.1645/GE-3333RN

Wang C, Luo J, Amer S, Guo Y, Hu Y, Lu Y, et al. Multivalent DNA vaccine induces protective immune responses and enhanced resistance against Cryptosporidium parvum infection. Vaccine. 2010;29(2):323–8. https://doi.org/10.1016/j.vaccine.2010.10.034

Zheng J, Ren W, Pan Q, Wang Q, elhag IAE, Li J, et al. A recombinant DNA vaccine encoding C. andersoni oocyst wall protein induces immunity against experimental C. parvum infection. Vet Parasitol. 2011;179(1–3):7–13. https://doi.org/10.1016/j.vetpar.2011.02.016

Yu Q, Li J, Zhang X, Gong P, Zhang G, Li S, et al. Induction of immune responses in mice by a DNA vaccine encoding Cryptosporidium parvum Cp12 and Cp21 and its effect against homologous oocyst challenge. Vet Parasitol. 2010;172(1–2):1–7. https://doi.org/10.1016/j.vetpar.2010.04.036

Liu K, Zai D, Zhang D, Wei Q, Han G, Gao H, et al. Divalent Cp15-23 vaccine enhances immune responses and protection against Cryptosporidium parvum infection. Parasite Immunol. 2010;32(5):335–44. https://doi.org/10.1111/j.1365-3024.2009.01191.x

Sagodira S, Iochmann S, Mevelec MN, Dimier-Poisson I, Bout D. Nasal immunization of mice with Cryptosporidium parvum DNA induces systemic and intestinal immune responses. Parasite Immunol. 1999;21(10):507–16. https://doi.org/10.1046/j.1365-3024.1999.00247.x

He H, Zhao B, Liu L, Zhou K, Qin X, Zhang Q, et al. The Humoral and Cellular Immune Responses in Mice Induced by DNA Vaccine Expressing the Sporozoite Surface Protein of Cryptosporidium parvum. DNA Cell Biol. 2004;23(5):335–9. https://doi.org/10.1089/104454904323090967

Ehigiator HN, Romagnoli P, Priest JW, Secor WE, Mead JR. Induction of murine immune responses by DNA encoding a 23-kDa antigen of Cryptosporidium parvum. Parasitol Res. 2007;101(4):943–50. https://doi.org/10.1007/s00436-007-0565-0

Benitez A, Priest JW, Ehigiator HN, McNair N, Mead JR. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis. Vaccine. 2011;29(49):9239–45. https://doi.org/10.1016/j.vaccine.2011.09.094

Khan KH. DNA vaccines: roles against diseases. GERMS. 2013;3(1):26–35. https://dx.doi.org/10.11599/germs.2013.1034

Ludington JG, Ward HD. Systemic and Mucosal Immune Responses to Cryptosporidium—Vaccine Development. Curr Trop Med Rep. 2015;2(3):171–80. https://dx.doi.org/10.1007/s40475-015-0054-y

Carleton HA. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J Biol Med. 2010;83(4):217–22.

Benitez AJ, McNair N, Mead JR. Oral immunization with attenuated Salmonella enterica serovar Typhimurium encoding Cryptosporidium parvum Cp23 and Cp40 antigens induces a specific immune response in mice. Clin Vaccine Immunol. 2009;16(9):1272–8. https://doi.org/10.1128/CVI.00089-09

Manque PA, Tenjo F, Woehlbier U, Lara AM, Serrano MG, Xu P, et al. Identification and Immunological Characterization of Three Potential Vaccinogens against Cryptosporidium Species. Clin Vaccine Immunol. 2011;18(11):1796–802. https://doi.org/10.1128/CVI.05197-11

Shirafuji H, Xuan X, Kimata I, Takashima Y, Fukumoto S, Otsuka H, et al. Expression of P23 of Cryptosporidium parvum in Toxoplasma gondii and Evaluation of its Protective Effects. Journal of Parasitology. 2005;91(2):476–9. https://doi.org/10.1645/GE-364R1

Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, Mosmann TR, et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature. 1988;334(6179):255–8. https://doi.org/10.1038/334255a0

Lemieux M, Sonzogni-Desautels K, Ndao M. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis. Pathogens. 2017;7(1):2. https://dx.doi.org/10.3390/pathogens7010002

Geriletu, Xu R, Jia H, Terkawi MA, Xuan X, Zhang H. Immunogenicity of Orally Administrated Recombinant Lactobacillus casei Zhang Expressing Cryptosporidium parvum Surface Adhesion Protein P23 in Mice. Curr Microbiol. 2011;62(5):1573–80. https://doi.org/10.1007/s00284-011-9894-4

Kwok LY, Wang L, Zhang J, Guo Z, Zhang H. A pilot study on the effect of Lactobacillus casei Zhang on intestinal microbiota parameters in Chinese subjects of different age. Benef Microbes. 2014;5(3):295–304. https://doi.org/10.3920/BM2013.0047

Sobati H, Jasor-Gharebagh H, Honari H. Expression and Purification of gp40/15 Antigen of Cryptosporidium parvum Parasite in Escherichia coli: an Innovative Approach in Vaccine Production. Iranian Red Crescent Medical Journal. 2017;19(4). http://dx.doi.org/10.5812/ircmj.43040

Ebrahimzadeh E, Shayan P, Mokhber Dezfouli M, Rahbari S. Recombinant Cryptosporidium parvum p23 as Candidate Vaccine for Cryptosporidiosis. Iranian Journal of Parasitology. 2009;4:1–7.

Zhang S, Wang Y, Wu H, Li N, Jiang J, Guo Y, et al. Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Front Microbiol 2019;10. https://dx.doi.org/10.3389/fmicb.2019.00354

Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. Vaccine. 2018;36(45):6703–10. https://doi.org/10.1016/j.vaccine.2018.09.044

Publicado
2020-03-25
Cómo citar
Salamanca, D., Molina Franky, J., Camargo Mancipe, A., & Gómez Rodríguez, A. (2020). Avances en el desarrollo de una vacuna efectiva contra Cryptosporidium parvum: una revisión de la literatura. Revista Investigación En Salud Universidad De Boyacá, 7(1). https://doi.org/10.24267/23897325.373