Babesia bovis: Actualidad del desarrollo de una vacuna

Babesia bovis: An Update on vaccine development

Contenido principal del artículo

Laura Esperanza Cuy Chaparro Universidad de Boyacá
Laura Alejandra Ricaurte Contreras Universidad Nacional de Colombia
Anny Jineth Camargo Mancipe Universidad de Boyacá
Darwin Andrés Moreno Pérez Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario. Universidad de Ciencias Aplicadas y Ambientales

Resumen

Introducción. Babesia bovis es el principal agente causal de la babesiosis bovina, una importante enfermedad veterinaria transmitida por garrapatas a nivel mundial. Las estrategias convencionales para controlar esta parasitosis han presentado múltiples limitaciones por lo que el desarrollo de una vacuna basada en antígenos representa una estrategia apropiada para la prevención y el tratamiento. Objetivo. Describir los aspectos relevantes del ciclo de vida del parásito B. bovis, la epidemiología, diagnóstico y la aplicación de diferentes estrategias usadas para controlar esta parasitosis. Además, se discuten potenciales puntos de intervención para desarrollar una vacuna contra este parásito. Metodología. Se realizó una búsqueda en las bases de datos usando los términos: “Babesia bovis AND lyfe cycle”, “B. bovis vaccine and Vaccine candidates”, entre otras. Los estudios con mayor pertinencia publicados hasta la actualidad se revisaron completamente. Resultados: Los detalles de la biología de parásito B. bovis y el proceso molecular usado para ocasionar la enfermedad en el hospedador son poco conocidos, lo que explica que el desarrollado de estrategias para el control de esta parasitosis no hayan sido del todo eficientes. Por lo tanto, se requiere diseñar nuevas medidas, por ejemplo, desarrollar vacunas de nueva generación basadas en un enfoque funcional que permitan mejorar las condiciones de sanidad animal. Conclusiones. Comprender el complejo ciclo de vida de B. bovis permitirá estudiar las interacciones huésped-parásito-garrapata e identificar moléculas implicadas en la adhesión/invasión celular para evaluar su utilidad como componente de una vacuna que controle esta parasitosis.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Laura Esperanza Cuy Chaparro, Universidad de Boyacá

Facultad de Ciencias de la Salud, Universidad de Boyacá, Tunja, Colombia

Laura Alejandra Ricaurte Contreras, Universidad Nacional de Colombia

Universidad Nacional de Colombia, Bogotá, Colombia

Anny Jineth Camargo Mancipe, Universidad de Boyacá

Facultad de Ciencias de la Salud, Universidad de Boyacá, Tunja, Colombia

Darwin Andrés Moreno Pérez, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario. Universidad de Ciencias Aplicadas y Ambientales

Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario. Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A) , Bogotá, Colombia.

Referencias (VER)

Hunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37. https://doi.org/10.1016/j.ijpara.2008.03.001

Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(7):S247-69. https://doi.org/10.1017/S0031182004005190

Gohil S, Kats LM, Sturm A, Cooke BM. Recent insights into alteration of red blood cells by Babesia bovis: moovin’ forward. Trends Parasitol. 2010;26(12):591-9. https://doi.org/10.1016/j.pt.2010.06.012

Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6. https://doi.org/10.1016/j.ijmm.2006.01.029

Nava A, Venzal J, González-Acuña D, Martins T, Guglielmone A. Ticks of the Southern Cone of America. Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance. 2017.

ECDC. Rhipicephalus sanguineus - current known distribution: January. 2018.

Pérez de León AA, Strickman DA, Knowles DP, Fish D, Thacker E, de la Fuente J, et al. One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasit Vectors. 2010;3(1):36. https://doi.org/10.1186/1756-3305-3-36

Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25. https://doi.org/10.1016/j.vetpar.2011.05.032

Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54: 447-54. https://doi.org/10.1016/j.meegid.2017.08.009

Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9. https://doi.org/10.1007/s11250-006-4181-2

Bram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16. https://doi.org/10.1603/0022-2585-39.3.405

Gonzalez J, Echaide I, Pabón A, Gabriel Piñeros Jj, Blair S, Tobón-Castaño A. Babesiosis prevalence in malaria-endemic regions of Colombia. J Vector Borne Dis. 2018;55(3):222. https://doi.org/10.4103/0972-9062.249480

Ríos-Osorio L, Zapata Salas R, Reyes Vélez J, Mejia J, Baena A. Enzootic Stability of Bovine Babesiosis at Puerto Berrio Region, Colombia. 2010;20(5): 485-492.

Vecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Corpoica Cienc Tecnol Agropecu. 2010;11(1):73. https://doi.org/10.21930/rcta.vol11_num1_art:197

Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97. https://doi.org/10.1016/j.ijpara.2018.11.002

de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96. https://doi.org/10.1016/j.vetpar.2006.01.042

Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chemical reviews. 2011;111(5):3459-507. https://doi.org/10.1021/cr100223m

Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28(7):1007-13. https://doi.org/10.1016/S0020-7519(98)00076-9

Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan contains a plastid encoding chlorophyll biosynthesis. bioRxiv. 2018. https://doi.org/10.1101/391565

Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. https://doi.org/10.1051/vetres/2009020

Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70. https://doi.org/10.1016/j.idc.2015.02.008

OIE. World Organization for Animal Health. 2019.

ICA. Enfermedades de declaración obligatoria en Colombia. 2019.

OIE. World Organization for Animal Health. 2017.

White MW, Suvorova ES. Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New. Trends Parasitol. 2018;34(9):759-71. https://doi.org/10.1016/j.pt.2018.07.006

Martinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008;47(1):261-73. https://doi.org/10.1016/j.ympev.2007.11.012

Allred DR, Al-Khedery B. Antigenic variation as an exploitable weakness of babesial parasites. Vet Parasitol. 2006;138(1-2):50-60. https://doi.org/10.1016/j.vetpar.2006.01.039

Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989;37(1):1-9. https://doi.org/10.1016/0166-6851(89)90096-0

Florin-Christensen M, Suarez CE, Hines SA, Palmer GH, Brown WC, McElwain TF. The Babesia bovis merozoite surface antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically distinct proteins. Infect Immun. 2002;70(7):3566-75. https://doiórg/10.1128/IAI.70.7.3566-3575.2002

Bennett J, Dolin R, Blaser, M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2015;2.

Montero E, Rodríguez M, Oksov Y, Lobo CA. Babesia divergens Apical Membrane Antigen 1 and Its Interaction with the Human Red Blood Cell. Infect Immun. 2009;77(11):4783-93. https://doi.org/10.1128/IAI.00969-08

Suarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18. https://doi.org/10.1017/S0031182011000321

Salama AA, Terkawi MA, Kawai S, AbouLaila M, Nayel M, Mousa A, et al. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol. 2013;135(3):623-8. http://dx.doi.org/10.1016/j.exppara.2013.09.017

Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5. https://doi.org/10.1097/MOH.0b013e328352245a.

Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439. https://doi.org/10.1186/s13071-016-1731-y.

Mehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology. Elsevier.1985;23:37-103. https://doi.org/10.1016/S0065-308X(08)60285-7

Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus (Boophilus) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31. https://doi.org/10.1128/JCM.01757-06

Polanco Echeverry DN, Ríos Osorio LA. Aspectos biológicos y ecológicos de las garrapatas duras. Corpoica Cienc Tecnol Agropecu. 2016;17(1):81. ISSN 0122-8706

Mehlhorn H, Schein E. The piroplasms: “A long story in short” or “Robert Koch has seen it”. Eur J Protistol. 1993;29(3):279-93. https://doi.org/10.1016/S0932-4739(11)80371-8

Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68. https://doi.org/10.1016/j.pt.2019.01.00

Yusuf J. Review on Bovine Babesiosis and its Economical Importance. Journal of Veterinary Medicine and Research. 2017;4(5):1090.

Echaide IE, Hines SA, McElwain TF, Suarez CE, McGuire TC, Palmer GH. In vivo binding of immunoglobulin M to the surfaces of Babesia bigemina-infected erythrocytes. Infect Immun. 1998;66(6):2922-7.

J. Mosqueda, A. Olvera-Ramírez, G. Aguilar-Tipacamú and G.J. Cantó. Current Advances in Detection and Treatment of Babesiosis. Current Medicinal Chemistry. 2012;19(10):1504-18. https://doi.org/10.2174/092986712799828355

Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16(4):622-36. https://doi.org/10.1128/CMR.16.4.622-636.2003

AbouLaila M, Sivakumar T, Yokoyama N, Igarashi I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol Int. 2010;59(2):278-82. https://doi.org/10.1016/j.parint.2010.02.006.

Meng L, Mohan R, Kwok BHB, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci. 1999;96(18):10403-8. https://doi.org/10.1073/pnas.96.18.10403

Randel RD, Chase CC, Wyse SJ. Effects of gossypol and cottonseed products on reproduction of mammals. J Anim Sci. 1992;70(5):1628-38. https://doi.org/10.2527/1992.7051628x

Elton CM, Rodriguez M, Ben Mamoun C, Lobo CA, Wright GJ. A library of recombinant Babesia microti cell surface and secreted proteins for diagnostics discovery and reverse vaccinology. Int J Parasitol. 2019;49(2):115-25. https://doi: 10.1016/j.ijpara.2018.10.003.

Brown WC, Palmer GH. Designing Blood-stage Vaccines against Babesia bovis and B. bigemina. Parasitol Today. 1999;15(7):275-81. https://doi.org/10.1016/S0169-4758(99)01471-4

Laughery JM, Knowles DP, Schneider DA, Bastos RG, McElwain TF, Suarez CE. Targeted Surface Expression of an Exogenous Antigen in Stably Transfected Babesia bovis. PLoS ONE. 2014;9(5):e97890. https://doi.org/10.1371/journal.pone.0097890

Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;1-30. https://doi.org/10.1017/S0031182014000961

Mangold AJ, Aguirre DH, Cafrune MM, de Echaide ST, Guglielmone AA. Evaluation of the infectivity of a vaccinal and a pathogenic Babesia bovis strain from Argentina to Boophilus microplus. Vet Parasitol. 1993;51(1-2):143-8. https://doi.org/10.1016/0304-4017(93)90205-2

Mafra CL, Patarroyo JH, Silva SS. Babesia bovis: infectivity of an attenuated strain of Brazilian origin for the tick vector, Boophilus microplus. Vet Parasitol. 1994;52(1-2):139-43. https://doi.org/10.1016/0304-4017(94)90043-4

Lau AO, Kalyanaraman A, Echaide I, Palmer GH, Bock R, Pedroni MJ, et al. Attenuation of virulence in an apicomplexan hemoparasite results in reduced genome diversity at the population level. BMC Genomics. 2011;12(1):410. https://doi.org/10.1186/1471-2164-12-410

Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13. https://doi.org/10.1016/j.biori.2017.10.001

Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55. https://doi.org/10.1128/IAI.72.5.2947-2955.2004

Terkawi MA, Ratthanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). Rodrigues MM, editor. PLoS ONE. 2013;8(12):e83305. https://doi.org/10.1371/journal.pone.0083305

Mosqueda J. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Attachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603. https://doi.org/10.1128/IAI.70.3.1599-1603.2002

Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577. https://doi.org/10.1186/s13071-016-1862-1

Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite surface antigen 2 proteins of Babesia bovis vaccine breakthrough isolates contain a unique hypervariable region composed of degenerate repeats. Infect Immun. 2005;73(11):7180-9. https://doi.org/10.1128/IAI.73.11.7180-7189.2005

Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 and its erythrocyte-binding activity. Infect Immun. 2002;70(10):5822-6. https://doi.org/10.1128/IAI.70.10.5822-5826.2002

Kemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev. 2013;37(4):607-31. https://doi.org/10.1111/1574-6976.12013.

Citado por

Artículos más leídos del mismo autor/a