Productividad laboral y rendimiento cognitivo de trabajadores expuestos a ambientes laborales con contaminación del aire. Revisión narrativa de la literatura

Work Productivity and Cognitive Performance of Workers Exposed to Work Environments with air Pollution

Contenido principal del artículo

Andrés Santiago Garzón-Pedraza Universidad de Boyacá, Tunja. Colombia
Nicol Daniela Sierra-Durán Universidad de Boyacá, Tunja. Colombia
Deisy Lorena Salamanca-Pinto Universidad de Boyacá, Tunja. Colombia
Juan Pablo Cruz-Delgado Universidad de Boyacá, Tunja. Colombia

Resumen

Introducción: Diversas investigaciones sobre la contaminación en entornos laborales han identificado efectos adversos en la salud mental de los trabajadores. Objetivo: Analizar las investigaciones que informan sobre el impacto en el rendimiento cognitivo y la productividad laboral de trabajadores expuestos a la contaminación del aire de ambientes laborales contaminados. Materiales y métodos: Revisión narrativa de la literatura, que analizó las investigaciones sobre el tema en diferentes bases de datos. Se implementó el método PRISMA para el proceso de selección de la información, teniendo en cuenta criterios de exclusión e inclusión, para el análisis se utilizó el software ATLAS.ti., como base exclusiva de la gestión de datos conceptuales. Discusión y resultados: Se evidenció una asociación entre las investigaciones consultadas, focos de interés analítico en común respecto a seis categorías temáticas identificadas (productividad laboral, rendimiento cognitivo, psicopatologías, contaminación del aire, agentes neurotóxicos y trabajadores expuestos), con un grado de coocurrencia investigativa y acuerdo parcial entre los resultados encontrados de la relación entre la contaminación y la productividad laboral, los procesos cognitivos y las psicopatologías. Conclusión: La exposición a la contaminación del aire influye de forma significativa en la salud mental y cognitiva, según sea la labor que se desarrolle. Esta exposición en el entorno laboral puede afectar el funcionamiento cognitivo y de procesos como la memoria, la capacidad de atención y el aprendizaje, así como aumentar la predisposición a trastornos psicológicos.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Qi H, Ji X. The labor productivity consequences of exposure to particulate matters: evidence from a Chinese National Panel Survey. Int J Environ Res Public Health. 2021 Dec 6;18(23):12859-9. https://doi.org/10.3390/ijerph182312859

Calderón‐Garcidueñas L, Stommel EW, Ravi Philip Rajkumar, Mukherjee PS, Ayala A. Particulate air pollution and risk of neuropsychiatric outcomes: what we breathe, swallow, and put on our skin matters. Int J Environ Res Public Health. 2021 Nov 3;18(21):11568-8. https://doi.org/10.3390/ijerph182111568

Bello-Medina PC, Rodrı́guez-Martı́nez E, Prado-Alcalá RA, Selva Rivas‐Arancibia. Contaminación por ozono, estrés oxidativo, plasticidad sináptica y neurodegeneración. Neurología. 2022 May 1;37(4):277-86. https://doi.org/10.1016/j.nrl.2018.10.003

King JD, Zhang S, Cohen A. Air pollution and mental health: associations, mechanisms and methods. Curr Opin Psychiatry. 2021 Dec 24;35(3):192-9. https://doi.org/10.1097/YCO.0000000000000771

Shang N, Zhang L, Wang S, Huang T, Wang Y, Gao X, et al. Increased aluminum and lithium and decreased zinc levels in plasma is related to cognitive impairment in workers at an aluminum factory in China: a cross-sectional study. Ecotoxicol Environ Saf. 2021 May;214:112110. https://doi.org/10.1016/j.ecoenv.2021.112110

Popp W, C. Vahrenholz, Schmieding W, E. Krewet, K. Norpoth. Investigations of the frequency of DNA strand breakage and cross-linking and of sister chromatid exchange in the lymphocytes of electric welders exposed to chromium- and nickel-containing fumes. Int Arch Occup Environ Health. 1991 Jun 1;63(2):115-20. https://doi.org/10.1007/BF00379074

González‐Domínguez R, García-Barrera T, Gómez-Ariza JL. Characterization of metal profiles in serum during the progression of Alzheimer 's disease. Metallomics. 2014 Jan 1;6(2):292-300. https://doi.org/10.1039/C3MT00301A

Mora A. Contaminación atmosférica y su relación con enfermedades del cerebro [internet]. 2020. Disponible en: https://repository.ucc.edu.co/server/api/core/bitstreams/9382819b-5140-4cba-8504-7d584c320f54/content

Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress. Antioxid Redox Signal. 2018 Jun 20;28(18):1669-703. https://doi.org/10.1089/ars.2017.7272

Mezzaroba L, Frizon Alfieri D, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. NeuroToxicology. 2019 Sep 1;74:230-41. https://doi.org/10.1016/j.neuro.2019.07.007

Kim H, Kim HS, Kim S, Hwang J, Lee H, Park B, et al. Effects of vitamin D on associations between air pollution and mental health outcomes in Korean adults: results from the Korea National Health and Nutrition Examination Survey (KNHANES). J Affect Dis. 2023 Jan 1;320:390-6. https://doi.org/10.1016/j.jad.2022.09.144

Shi W, Li T, Zhang Y, Sun Q, Chen C, Wang J, et al. Depression and anxiety associated with exposure to fine particulate matter constituents: a cross-sectional study in North China. Environ Sci Technol. 2020 Dec 4;54(24):16006-

https://doi.org/10.1021/acs.est.0c05331

Xu S, Zhang Y, Ju X, Gao D, Yang H, Wang L, et al. Cross-sectional study based on occupational aluminium exposure population. Environ Toxicol Pharmacol. 2021 Apr 1;83:103581-1. https://doi.org/10.1016/j.etap.2020.103581

Couette M, Boisse MF, Maison P, Brugieres P, Cesaro P, Chevalier X, et al. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem. 2009 Nov 1;103(11):1571-8. https://doi.org/10.1016/j.jinorgbio.2009.08.005

Mehrifar Y, Bahrami M, Sidabadi E, Pirami H. The effects of occupational exposure to manganese fume on neurobehavioral and neurocognitive functions: An analytical cross-sectional study among welders. EXCLI J. 2020 Jan 1;19:372-86. https://doi.org/10.17179/excli2019-2042

Gharibi H, Entwistle MR, Ha S, Gonzalez M, Brown P, Schweizer D, Cisneros R. Ozone pollution and asthma emergency department visits in the Central Valley, California, USA, during June to September of 2015: a time-stratified case-crossover analysis. J Asthma. 2018 Oct 9;56(10):1037-48. https://doi.org/10.1080/02770903.2018.1523930

Mayorga-Ruge LA. Exposición a monóxido de carbono, alteraciones clínicas y funcionamiento neuropsicológico en trabajadores de minas de carbón subterráneas en Cundinamarca, 2018 [tesis de maestría en internet]. Bogotá: Universidad Nacional de Colombia; 2019 [citada 2023 oct 20]. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/75588/1022327168.2019.pdf?sequence=1&isAllowed=y

Ministerio para la Transición Ecológica de España. Monóxido de carbono [internet]. Disponible en: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/salud/monoxido-carbono.html

Ministerio de Minas y Energía de Colombia. Política minera de Colombia: bases para la minería del futuro [internet]. Bogotá: Ministerio; 2016. Disponible en: https://www.minenergia.gov.co/documents/2423/Pol%C3%ADtica_Minera_de_Colombia_final.pdf

Oxford Advanced Learner's Dictionary. Definition [internet] 2023 [citado 2023 di 5]. Disponible en: https://www.oxfordlearnersdictionaries.com/definition/english/dictionary

Fadeyi MO, Tham KW, Wu WY. Impact of asthma, exposure period, and filters on human responses during exposures to ozone and its initiated chemistry products. Indoor Air. 2014 Oct 14;25(5):512-22. https://doi.org/10.1111/ina.12161

Maula H, Hongisto V, Naatula V, Haapakangas A, Koskela H. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms. Indoor Air. 2017 May 2;27(6):1141-53. https://doi.org/10.1111/ina.12387

Lee SJ, Nam B, Harrison RJ, Hong O. Acute symptoms associated with chemical exposures and safe work practices among hospital and campus cleaning workers: a pilot study. Am J Ind Med. 2014 Sep 15;57(11):1216-26. https://doi.org/10.1002/ajim.22376

Realyvásquez-Vargas A, Maldonado-Macías AA, Cortés-Robles LJ, Blanco‐Fernández J. Structural model for the effects of environmental elements on the psychological characteristics and performance of the employees of manufacturing systems. Int J Environ Res Public Health. 2016 Jan 5;13(1):104-4. https://doi.org/10.3390/ijerph13010104

Wolkoff P, Azuma K, Carrer P. Health, work performance, and risk of infection in office-like environments: the role of indoor temperature, air humidity, and ventilation. Int J Hyg Environ Health. 2021 Apr 1;233:113709-9. https://doi.org/10.1016/j.ijheh.2021.113709

Lu JG. Air pollution: a systematic review of its psychological, economic, and social effects. Curr Opin Psychol. 2020 Apr 1;32:52-65. https://doi.org/10.1016/j.copsyc.2019.06.024

Andrade V, Serrazina DC, Mateus ML, Batoréu C, Aschner M, Santos. Multibiomarker approach to assess the magnitude of occupational exposure and effects induced by a mixture of metals. Toxicol Appl Pharmacol. 2021 Oct 1;429:115684-4. https://doi.org/10.1016/j.taap.2021.115684 31

Materu SF, Sway GG, Mussa BS. Workplace concentrations of particulate matter and noise levels among stone quarry and soil brick-making workers in Tanzania. J Occup Environ Hyg. 2023 Aug 16;20(12)1-11. https://doi.org/ 10.1080/15459624.2023.2249520

van der Plaat DA, Vonk JM, Terzikhan N, de Jong K, de Vries M, La Bastide-van Gemert S, et al. Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression. Hum Mol Genet. 2019 Aug 1;28(15):2477-2485. https://doi.org/ 10.1093/hmg/ddz067

Thompson R, Smith RB, Karim YB, Shen C, Drummond K, Teng C, Toledano MB. Air pollution and human cognition: A systematic review and meta-analysis. Sci Total Environ. 2023 Feb 1;859:160234-4. https://doi.org/10.1016/j.scitotenv.2022.160234

Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect. 2016 Jun 1;124(6):805-12. https://doi.org/10.1289/ehp.1510037

Roels H, Bowler RM, Kim Y, Birgit Claus Henn, Mergler D, Hoet P, et al. Manganese exposure and cognitive deficits: A growing concern for manganese neurotoxicity. NeuroToxicology. 2012 Aug 1;33(4):872-80. https://doi.org/10.1016/j.neuro.2012.03.009

Gangemi S, Miozzi E, Teodoro M, Briguglio G, Annamaria De Luca, Alibrando C, et al. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol Med Rep. 2016 Oct 10;14(5):4475-88. https://doi.org/10.3892/mmr.2016.5817

Steckling N, Dietrich Plaß, Blüml S, Kobal AB, Krämer A, Hornberg C. Disease profile and health-related quality of life (HRQoL) using the EuroQol (EQ-5D + C) questionnaire for chronic metallic mercury vapor intoxication. Health Qual Life Outcomes. 2015 Dec 1;13(1). https://doi.org/10.1186/s12955-015-0388-0

Bhat AR, Wani MA, Kirmani AR. Brain cancer and pesticide relationship in orchard farmers of Kashmir. Indian J Occup Environ Med. 2010 Jan 1;14(3):78-8. https://doi.org/10.4103/0019-5278.75694

Ma RE, Ward EJ, Yeh CL, Snyder S, Long Z, Gokalp Yavuz F, et al. Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI. NeuroToxicology. 2018 Jan 1;64:30-42. https://doi.org/10.1016/j.neuro.2017.08.013

Zare Sakhvidi MJ, Yang J, Lequy E, Chen J, de Hoogh K, Letellier N, et al. Outdoor air pollution exposure and cognitive performance: findings from the enrolment phase of the CONSTANCES cohort. Lancet Planet Health. 2022 Mar 1;6(3):e219-29. https://doi.org/10.1016/S2542-5196(22)00001-8

Iversen IB, Mohr MS, Vestergaard JM, Stokholm ZA, Kolstad HA. Associations of occupational styrene exposure with risk of encephalopathy and unspecified dementia: a long-term follow-up study of workers in the reinforced plastics industry. Am J Epidemiol. 2020 Aug 17;190(2):288-94. https://doi.org/10.1093/aje/kwaa170

Alarcón R, Giménez B, Hernández AF, López-Villén A, Parrón T, García-González J, et al. Occupational exposure to pesticides as a potential risk factor for epilepsy. NeuroToxicology. 2023 May 1;96:166-73. https://doi.org/10.1016/j.neuro.2023.04.012

Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course: a systematic literature review. Environ Res. 2016 May 1;147:383-98. https://doi.org/10.1016/j.envres.2016.01.018

Wang H, Zhang L, Abel GM, Storm DR, Xia Z. Cadmium exposure impairs cognition and olfactory memory in male c57BL/6 mice. Toxicol Sci. 2017 Sep 25;161(1):87-102. https://doi.org/10.1093/toxsci/kfx202

Selinheimo S, Vuokko A, Sainio M, Karvala K, Suojalehto H, Järnefelt H, et al. Comparing cognitive-behavioural psychotherapy and psychoeducation for non-specific symptoms associated with indoor air: a randomised control trial protocol. BMJ Open. 2016 Jun 1;6(6):e011003-3. https://doi.org/10.1136/bmjopen-2015-011003

Thomson R, Parry G. Neuropathies associated with excessive exposure to lead. Muscle Nerve. 2006 Jan 1;33(6):732-41. https://doi.org/10.1002/mus.20510

Fu M, Wang H, Ma Y, Du J, Niu Q, Nie J. Urinary polycyclic aromatic hydrocarbon metabolites, plasma p-tau231 and mild cognitive impairment in coke oven workers. Chemosphere. 2022 Nov 1;307:135911-1. https://doi.org/10.1016/j.chemosphere.2022.135911

Tanner CM, G. Webster Ross, Jewell SA, Hauser RA, Jankovic J, Factor SA, et al. Occupation and risk of Parkinsonism. Arch Neurol. 2009 Sep 1;66(9). https://doi.org/10.1001/archneurol.2009.195

Golding J, Jones R, Preece A, Bruné MN, Pronczuk J. Choice of environmental components for a longitudinal birth cohort study. Paediatr Perinat Epidemiol. 2009 May 19;23(s1):134-53. https://doi.org/10.1111/j.1365-3016.2009.01014.x

Lin YH, Guo Y, Chen P, Liu JH, Wu H, Hwang YH. Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan. Environ Res. 2011 Feb 1;111(2):260-5. https://doi.org/10.1016/j.envres.2011.01.001

Zhao Y, Qu Y, Ou Y, Zhang Y, Tan L, Yu J. Environmental factors and risks of cognitive impairment and dementia: a systematic review and meta-analysis. Ageing Res Rev. 2021 Dec 1;72:101504-4. https://doi.org/10.1016/j.arr.2021.101504

Letellier N, Gutiérrez L, Pilorget C, Artaud F, Descatha A, Ozguler A, et al. Association between occupational exposure to formaldehyde and cognitive impairment. Neurology. 2021 Dec 22;98(6):e633-40. https://doi.org/10.1212/WNL.0000000000013146

Anger WK, Farahat FM, Lein PJ, Lasarev MR, Olson JR, Farahat TM, et al. Magnitude of behavioral deficits varies with job-related chlorpyrifos exposure levels among Egyptian pesticide workers. NeuroToxicology. 2020 Mar 1;77:216-30. https://doi.org/10.1016/j.neuro.2020.01.012

Shehab M, Pope FD. Effects of short-term exposure to particulate matter air pollution on cognitive performance. Sci Rep. 2019 Jun 3;9(1). https://doi.org/10.1038/s41598-019-44561-0

Menezes-Filho JA, Bouchard M, Sarcinelli PdeN, Moreira JC. Manganese exposure and the neuropsychological effect on children and adolescents: a review. Rev Panam Salud Pública. 2009 Dec 1;26(6):541-8. https://doi.org/10.1590/S1020-49892009001200010

Deschamps F, Lesage FX, Chobriat J, Py N, Novella J. Exposure risk assessment in an aluminium salvage plant. J Occup Environ Med. 2009 Nov 1;51(11):1267-74. https://doi.org/10.1097/JOM.0b013e3181bc2d35 41

Llango SD, Gonzalez K, Gallo LC, Allison M, Cai J, Isasi CR, et al. Long-term exposure to ambient air pollution and cognitive function among Hispanic/Latino adults in San Diego, California. J Alzheimer's Dis. 2021 Feb 16;79(4):1489-

https://doi.org/10.3233/JAD-200766

Bagepally BS, Balachandar R, Kalahasthi R, Tripathi R, Haridoss M. Association between aluminium exposure and cognitive functions: A systematic review and meta-analysis. Chemosphere. 2021 Apr 1;268:128831-1. https://doi.org/10.1016/j.chemosphere.2020.128831

Suresh S, Singh S A, Vellapandian C. Bisphenol A exposure links to exacerbation of memory and cognitive impairment: A systematic review of the literature. Neurosci Biobehav Rev. 2022 Dec 1;143:104939-9. https://doi.org/10.1016/j.neubiorev.2022.104939

Wlazło Ł, Nowakowicz-Dębek B, Chmielowiec-Korzeniowska A, Maksym P, Pawlak H, Kapica J. Assessment of the level of organic dust and mould spores in the work environment of baker. Indian J Occup Environ Med. 2020 Sep-Dec;24(3):137-41. https://doi.org/ 10.4103/ijoem.IJOEM_51_19

Quandt SA, Jones BT, Talton JW, Whalley LE, Galván L, Vallejos QM, et al. Heavy metals exposures among Mexican farmworkers in eastern North Carolina. Environ Res. 2010 Jan 1;110(1):83-8. https://doi.org/10.1016/j.envres.2009.09.007

Moreton F, Brenner R, Lazarus J, Davenport R. Clinicopathological case: progressive cognitive decline with gait disturbance in a steel worker. Pract Neurol. 2017 Apr;17(2):159-66. https://doi.org/ 10.1136/practneurol-2016-001527

Vehviläinen T, Lindholm H, Rintamäki H, Pääkkönen R, Hirvonen A, Niemi O, et al. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. J Occup Environ Hyg. 2016 Jan 2;13(1):19-29. https://doi.org/10.1080/15459624.2015.1076160 48

Ovadje L, Calys‐Tagoe B, Clarke E, Basu N. Registration status, mercury exposure biomarkers, and neuropsychological assessment of artisanal and small-scale gold miners (ASGM) from the Western Region of Ghana. Environ Res. 2021 Oct 1;201:111639-9. https://doi.org/10.1016/j.envres.2021.111639

Fimm B, Sturm W, Esser A, Schettgen T, Willmes K, Lang J, et al. Neuropsychological effects of occupational exposure to polychlorinated biphenyls. NeuroToxicology. 2017 Dec 1;63:106-19. https://doi.org/10.1016/j.neuro.2017.09.011

Bjørklund G, Hilt B, Dadar M, Lindh U, Aaseth J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin Pharmacol Toxicol. 2019 Mar 12;124(5):568-74. https://doi.org/10.1111/bcpt.13199

Mostovenko E, Canal CG, Cho MJ, Sharma K, Erdely A, Campen MJ, et al. Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Therapeut. 2022 Jul 1;235:108120-0. https://doi.org/10.1016/j.pharmthera.2022.108120

Inan-Eroglu E, Ayaz A. Is aluminum exposure a risk factor for neurological disorders? J Res Med Sci. 2018 Jun 6;23:51. https://doi.org/ 10.4103/jrms.JRMS_921_17

Cipriani G, Danti S, Carlesi C, Borin G. Danger in the air: air pollution and cognitive dysfunction. Am J Alzheimers Dis Other Demen. 2018 Sep;33(6):333-341. https://doi.org/ 10.1177/1533317518777859

Bevan R, Ashdown L, McGough D, Huici-Montagud A, Levy LS. Setting evidence-based occupational exposure limits for manganese. NeuroToxicology. 2017 Jan 1;58:238-48. https://doi.org/10.1016/j.neuro.2016.08.005

Mohammed RS, Ibrahim WH, Sabry D, El-Jaafary SI. Occupational metals exposure and cognitive performance among foundry workers using tau protein as a biomarker. NeuroToxicology. 2020 Jan 1;76:10-6. https://doi.org/10.1016/j.neuro.2019.09.017

Dobbs M. Toxic encephalopathy. Sem Neurol. 2011 Apr 1;31(02):184-93. https://doi.org/10.1055/s-0031-1277989

Gaikwad AS, Mahmood R, Ravichandran B, Panjakumar Karunamoorthy, Venugopal Dhananjayan. Mitochondrial DNA copy number and cytogenetic damage among fuel filling station attendants. Environ Mol Mutagen. 2020 Sep 2;61(8):820-9. https://doi.org/10.1002/em.22404

Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Int Med. 2020 Aug 4;173(3):ITC17-32. https://doi.org/10.7326/AITC202008040

Oddone E, Scaburri A, Bai E, Modonesi C, Stracci F, Marchionna G, Crosignani P, Imbriani M. Occupational brain cancer risks in Umbria (Italy), with a particular focus on steel foundry workers. G Ital Med Lav Ergon. 2014 Apr-Jun;36(2):111-7.

Citado por