Avances en el desarrollo de una vacuna contra la malaria por Plasmodium falciparum: una revisión de literatura
Advances in the development of vaccine against malaria by Plasmodium falciparum: a literature review
Contenido principal del artículo
Resumen
Introducción. La malaria por Plasmodium falciparum es una enfermedad causante de altas tasas de morbimortalidad a nivel mundial. Diferentes candidatos a vacuna se han evaluado experimentalmente en humanos; sin embargo, no se dispone de ninguna vacuna que reduzca o elimine esta devastadora enfermedad. Objetivo. Describir en términos de diseño, respuesta inmune, eficacia protectiva y perspectivas, los principales candidatos vigentes a vacuna contra la malaria por Plasmodium falciparum, dirigidos a las fases pre-eritrocítica y eritrocítica. Metodoogía. Se realizó una revisión descriptiva de trabajos publicados en bases de datos PubMed, Science Direct, Embase y MedLine. Los criterios de inclusión fueron: trabajos publicados en una ventana de tiempo entre 2000 y 2019, candidatos a vacuna contra Plasmodium falciparum en estadíos pre y eritrocíticos y vigencia según la Organización Mundial de la Salud. En total, se revisaron 90 artículos originales, encontrando que 63 cumplieron con todos los criterios establecidos, mientras que 27, no cumplieron por lo menos con un criterio. Resultados. Los candidatos a vacunas vigentes incluyen diseños basados en parásitos atenuados, proteínas recombinantes, vectores virales y síntesis química. Las formulaciones contienen un número mínimo de antígenos con secuencias de aminoácidos altamente polimórficas, que inducen un aceptable perfil de inmunogenicidad, aunque una limitada eficacia protectora contra la malaria, debido a que tales regiones polimórficas son inmunodominantes, confiriendo únicamente inmunidad específica de cepa. Conclusión. El desarrollo de una vacuna efectiva contra la malaria por Plasmodium falciparum posiblemente requiera incluir múltiples epítopes funcionalmente relevantes, del estadío pre y eritrocítico, que contengan regiones conservadas entre cepas, para lograr inducir respuestas inmunes duraderas que bloqueen la invasión del parásito a células hepáticas y eritrocitos.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
WHO: World Health Organization. [Internet]. Ginebra:Suiza; [4 de diciembre de 2019; citado 10 de diciembre de 2019]. World malaria report 2019. [aprox. 5 pantallas]. Available from: https://www.who.int/publications-detail/world-malaria-report-2019.
Coelho CH, Doritchamou J, Zaidi I, Duffy P. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. npj Vaccines. 2017;(2):34. https://doi.org/10.1038/s41541-017-0035-3
Tahita MC, Tinto H, Menten J, Ouedraogo J-B, Guiguemde RT, van Geertruyden J, et al. Clinical signs and symptoms cannot reliably predict Plasmodium falciparum malaria infection in pregnant women living in an area of high seasonal transmission. Malar J. 2013;12(1):464. https://doi.org/10.1186/1475-2875-12-464
Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin & Immunotheraps.2015;11(6):1465-73. https://doi.org/10.1080/21645515.2015.1026496
Sinnis P, Coppi A. A long and winding road: The Plasmodium sporozoite’s journey in the mammalian host. Parasit Internal. 2007;56(3):171-8. https://doi.org/10.1016/j.parint.2007.04.002
García JE, Puentes A, Patarroyo ME. Developmental Biology of Sporozoite-Host Interactions in Plasmodium falciparum Malaria: Implications for Vaccine Design. Clin. Microbiol. Rev. 2006;19(4):686-707. https://doi.org/10.1128/CMR.00063-05
Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell. 1997;90(3):511-22. https://doi.org/10.1016/s0092-8674(00)80511-5
Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016;167(3):610-24. https://doi.org/10.1016/j.cell.2016.07.055
Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198(6):961-71. https://doi.org/10.1083/jcb.201206112
Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol. 2009;7(5):341-54. https://doi.org/10.1038/nrmicro2110
Kato K, Mayer DCG, Singh S, Reid M, Miller LH. Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. PNAS. 2005;102(15):5552-7. https://doi.org/10.1073/pnas.0501594102
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. J Immunother. 2017;9(2):131-55. https://doi.org/10.2217/imt-2016-0091
Baum J, Gilberger T-W, Frischknecht F, Meissner M. Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol. 2008;24(12):557-63. https://doi.org/10.1016/j.pt.2008.08.006
Ahouidi AD, Amambua-Ngwa A, Awandare GA, Bei AK, Conway DJ, Diakite M, et al. Malaria Vaccine Development: Focusing Field Erythrocyte Invasion Studies on Phenotypic Diversity. Trends Parasitol. 2016;32(4):274-83. https://doi.org/10.1016/j.pt.2015.11.009
Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opinion on Biological Therapy. 2015;15(11):1567-81. https://doi.org/10.1517/14712598.2015.1075505
Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, et al. Vaccine development: From concept to early clinical testing. Vaccine. 2016;34(52):6655-64. https://doi.org/10.1016/j.vaccine.2016.10.016
Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature. 2011;473(7348):463-9. https://doi.org/10.1038/nature10124
WHO: World Health Organization. [Internet]. Ginebra:Suiza; [ 17 de julio de 2017; citado 20 de noviembre 2019]. Malaria Vaccine Rainbow Tables. [aprox. 1 pantalla]. Available from: https://www.who.int/immunization/research/development/Rainbow_tables/en/
Coffman RL, Sher A, Seder RA. Vaccine Adjuvants: Putting Innate Immunity to Work. J Immun. 2010;33(4):492-503. https://doi.org/10.1016/j.immuni.2010.10.002
Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG, Hall T, et al. Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J Infect Dis. 2001;183(4):640-7. https://doi.org/10.1086/318534
Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, Immunogenicity, and Efficacy of a Recombinantly Produced Plasmodium falciparum Circumsporozoite Protein-Hepatitis B Surface Antigen Subunit Vaccine. J Infectious Diseases. 1995;171(6):1576-85. https://doi.org/10.1093/infdis/171.6.1576
Doud, M.B., Koksal, A.C., Mi, L.Z., Song, G., Lu, C., Springer, T.A. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci U S A 2012;109:7817-7822. https://doi.org/10.1073/pnas.1205737109
Tossavainen, H., Pihlajamaa, T., Huttunen, T.K., Raulo, E., Rauvala, H., Permi, P., Kilpelainen, I.; Protein Sci 2006;15:1760-1768. https://doi.org/10.1110/ps.052068506
Chen, L., Xu, Y., Healer, J., Thompson, JK, Smith, BJ, Lawrence, MC, Cowman, AF. Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. Elife. 2014;3. https://doi.org/10.7554 / eLife.04187
Lim, S.S., Yang, W., Krishnarjuna, B., Kannan Sivaraman, K., Chandrashekaran, I.R., Kass, I., MacRaild, C.A., Devine, S.M., Debono, C.O., Anders, R.F., Scanlon, M.J., Scammells, P.J., Norton, R.S., McGowan, S. Structure and Dynamics of Apical Membrane Antigen 1 from Plasmodium falciparum FVO. Biochemistry. 2014;53:7310-7320. https://doi.org /10.1021/bi5012089
Tolia, N.H., Enemark, E.J., Sim, B.K., Joshua-Tor, L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122:183-193. https://doi.org 10.1016/j.cell.2005.05.033
Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG, Hall T, et al. A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naïve adults. Vaccine. 2007;25(29):5359-66. https://doi.org/10.1016/j.vaccine.2007.05.005
Macete E, Aponte JJ, Guinovart C, Sacarlal J, Ofori-Anyinam O, Mandomando I, et al. Safety and immunogenicity of the RTS,S/AS02A candidate malaria vaccine in children aged 1-4 in Mozambique. Trop Med Internal Health. 2006;12(1):37-46. https://doi.org/10.1111/j.1365-3156.2006.01754.x
Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. The Lancet. 2004;364(9443):1411-20. https://doi.org/10.1016/S0140-6736(04)17223-1
Horowitz A, Hafalla JCR, King E, Lusingu J, Dekker D, Leach A, et al. Antigen-Specific IL-2 Secretion Correlates with NK Cell Responses after Immunization of Tanzanian Children with the RTS,S/AS01 Malaria Vaccine. The Journal of Immunology. 2012;188(10):5054-62. https://doi.org/10.4049/jimmunol.1102710
White MT, Bejon P, Olotu A, Griffin JT, Bojang K, Lusingu J, et al. A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Med. 2014;12:117. https://doi.org/10.1186/s12916-014-0117-2
White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE, et al. The relationship between RTS,S vaccine-induced antibodies, CD4+ T cell responses and protection against Plasmodium falciparum infection. PLoS ONE. 2013;8(4):e61395. https://doi.org/10.1371/journal.pone.0061395
Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria. Front Immunol. 2018;9:2748. https://doi.org/10.3389/fimmu.2018.02748
Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016;22(6):614-23. https://doi.org/10.1038/nm.4110
Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Corrigendum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016;22(6):692. https://doi.org/10.1038/nm.4110
Takashima E, Morita M, Tsuboi T. Vaccine candidates for malaria: what’s new? Expert Rev Vaccines. 2016;15(1):1-3. https://doi.org/10.1586/14760584.2016.1112744
Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015;33:7452–61. https://doi.org/10.1016/j.vaccine.2015.09.096
Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA. 2017;114:2711–6. https://doi.org/10.1073/pnas.1615324114
Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, et al. Safety and efficacy of PfSPZ vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017;17:498–509. https://doi.org/10.1016/S1473-3099(17)30104-4
Dunachie SJ, Walther M, Epstein JE, Keating S, Berthoud T, Andrews L, et al. A DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccine Encoding Thrombospondin-Related Adhesion Protein but Not Circumsporozoite Protein Partially Protects Healthy Malaria-Naive Adults against Plasmodium falciparum Sporozoite Challenge. Infect Immun. 2006;74(10):5933-42. https://doi.org/10.1128/IAI.00590-06
Hill AVS, Reyes-Sandoval A, O’Hara G, Ewer K, Lawrie A, Goodman A, et al. Prime-boost vectored malaria vaccines: Progress and prospects. Human Vaccines. 2010;6(1):78-83. https://doi.org/10.4161/hv.6.1.10116
Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines. 2012;11(10):1261-80. https://doi.org/10.1586/erv.12.92
Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, Todryk S, et al. A Phase 2b Randomised Trial of the Candidate Malaria Vaccines FP9 ME-TRAP and MVA ME-TRAP among Children in Kenya. PLoS Clinical Trials. 2006;1(6):e. https://doi.org/10.1371/journal.pctr.0010029
de Barra E, Hodgson SH, Ewer KJ, Bliss CM, Hennigan K, Collinset A al. A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One. 2014;9(12):e115161. Published 2014 Dec 18. https://doi.org/10.1371/journal.pone.0115161
Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Ther. 2012;20:2355–68. https://doi.org/10.1038/MT.2012.223
Deshmukh A, Chourasia BK, Mehrotra S, Kana IH, Paul G, Panda A, et al. Plasmodium falciparum MSP3 exists in a complex on the merozoite surface and generates antibody response during natural infection. Infect Immun. 2018;23;86(8). https://doi.org/10.1128/IAI.00067-18
Sirima SB, Nébié I, Ouédraogo A, Tiono AB, Konaté AT, Gansané A, et al. Safety and immunogenicity of the Plasmodium falciparum merozoite surface protein-3 long synthethic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in Burkina Faso, West Africa. Vaccine. 2007;25(14). https://doi.org/10.1016/j.vaccine.2006.05.090
Nebie I, Diarra A, Ouedraogo A, Tiono AB, Konate AT, Gansane A, et al. Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area, Burkina Faso. Parasite Immunol. 2009;31(8):474-80. https://doi.org/10.1111/j.1365-3024.2009.01130.x
Sirima SB, Tiono AB, Ouédraogo A, Diarra A, Ouédraogo AL, Yaro JB, et al. Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children. PLoS ONE. 2009;4(10):e7549. https://doi.org/10.1371/journal.pone.0007549
Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, et al. Phase I Malaria Vaccine Trial with a Long Synthetic Peptide Derived from the Merozoite Surface Protein 3 Antigen. Infect Immun. 2005;73(12):8017-26. https://doi.org/10.1128/IAI.73.12.8017-8026.2005
Corradin G, Villard V, Kajava AV. Protein structure based strategies for antigen discovery and vaccine development against malaria and other pathogens. Endocr Metab Immune Disord Drug Targets. 2007;7(4):259-65. https://doi.org/10.2174/187153007782794371
Villard V, Agak GW, Frank G, Jafarshad A, Servis C, Nébié I, et al. Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif. Saul A, editor. PLoS ONE. 2007;2(7):e645. https://doi.org/10.1371/journal.pone.0000645
Steiner-Monard V, Kamaka K, Karoui O, Roethlisberger S, Audran R, Daubenberger C, et al. The Candidate Blood Stage Malaria Vaccine P27A Induces a Robust Humoral Response in a Fast Track to the Field Phase I Trial in Exposed and Non Exposed Volunteers. Clin Infect Dis. 2018;18;68(3) https://doi.org/10.1093/cid/ciy514
Li J, Mitamura T, Fox BA, Bzik DJ, Horii T. Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol Int. 2002;51(4):343-52. https://doi.org/10.1016/s1383-5769(02)00042-9
Horii T, Shirai H, Jie L, Ishii KJ, Palacpac NQ, Tougan T, et al. Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int. 2010;59(3):380-6. https://doi.org/10.1016/j.parint.2010.05.002
Yagi M, Palacpac NMQ, Ito K, Oishi Y, Itagaki S, Balikagala B, et al. Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine responders during a follow-up study in Uganda. Sci Rep. 2016;6(1):34363. https://doi.org/10.1038/srep34363
Palacpac NMQ, Ntege E, Yeka A, Balikagala B, Suzuki N, Shirai H, et al. Phase 1b Randomized Trial and Follow-Up Study in Uganda of the Blood-Stage Malaria Vaccine Candidate BK-SE36. PLoS ONE. 2013;8(5):e64073. https://doi.org/10.1371/journal.pone.0064073
Horii T. Decisions for the future. Hum Vaccin Immunother. 2014;10(1):7-10. https://doi.org/10.4161/hv.28053
Tougan T, Edula JR, Takashima E, Morita M, Shinohara M, Shinohara A, et al. Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep. 2018;8(1):5052. https://doi.org/10.1038/s41598-018-23194-9
Patarroyo ME, Aza-Conde J, Moreno-Vranich A, Pabón L, Varela Y, Patarroyo MA. Far from the Madding Crowd: the Molecular Basis for Immunological Escape of Plasmodium falciparum. Curr Issues Mol Biol. 2017;22:65–78. https://doi.org/10.21775/cimb.022.065
Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, et al. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis. 2016;213(11):1743-51. https://doi.org/10.1093/infdis/jiw039
Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight. 2017;2(21):e96381. https://doi.org/10.1172/jci.insight.96381
Sheehy SH, Duncan CJA, Elias SC, Biswas S, Collins KA, O’Hara GA, et al. Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors. Doolan DL, editor. PLoS ONE. 2012;7(2):e31208. https://doi.org/10.1371/journal.pone.0031208
Wong W, Huang R, Menant S, Hong Ch, Sandow JJ, Richard W, et al. Structure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complex. Nature. 2019;565(7737):118–121. https://doi.org/10.1038/s41586-018-0779-6
Favuzza P, Guffart E, Tamborrini M, Scherer B, Dreyer AM, Ruferet AC, et al. Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. Elife. 2017;6:e20383. https://doi.org/10.7554/eLife.20383
Singh S, Soe S, Mejia J-P, Roussilhon C, Theisen M, Corradin G, et al. Identification of a conserved region of Plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. J Infect Dis. 2004;190(5):1010-8. https://doi.org/10.1086/423208
Soe S, Theisen M, Roussilhon C, Aye K-S, Druilhe P. Association between Protection against Clinical Malaria and Antibodies to Merozoite Surface Antigens in an Area of Hyperendemicity in Myanmar: Complementarity between Responses to Merozoite Surface Protein 3 and the 220-Kilodalton Glutamate-Rich Protein. Infect Immun. 2004;72(1):247-52. https://doi.org/10.1128/iai.72.1.247-252.2004
Esen M, Kremsner PG, Schleucher R, Gässler M, Imoukhuede EB, Imbault N, et al. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine. 2009;27(49):6862-8. https://doi.org/10.1016/j.vaccine.2009.09.011
Bélard S, Issifou S, Hounkpatin AB, Schaumburg F, Ngoa UA, Esen M, et al. A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children. Beeson JG, editor. PLoS ONE. 2011;6(7):e22525. https://doi.org/10.1371/journal.pone.0022525
Sirima SB, Mordmüller B, Milligan P, Ngoa UA, Kironde F, Atuguba F, et al. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine. 2016;34(38):4536-42. https://doi.org/10.1016/j.vaccine.2016.07.041
Remarque EJ, Faber BW, Kocken CHM, Thomas AW. A Diversity-Covering Approach to Immunization with Plasmodium falciparum Apical Membrane Antigen 1 Induces Broader Allelic Recognition and Growth Inhibition Responses in Rabbits. Infect Immun. 2008;76(6):2660-70. https://doi.org/10.1128/IAI.00170-08
Kwenti TE, Moye AL, Wiylanyuy AB, Njunda LA, Nkuo-Akenji T. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J. 2017;16(1):453. https://doi.org/10.1186/s12936-017-2105-4
Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. PNAS. 2011;108(32):13275-80. https://doi.org/10.1073/pnas.1110303108
Sirima SB, Durier C, Kara L, Houard S, Gansane A, Loulergue P, et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: A phase 1a/1b, randomized, double-blind multi-centre trial. Vaccine. 2017;35(45):6218-27. https://doi.org/10.1016/j.vaccine.2017.09.027
Spiegel H, Boes A, Fendel R, Reimann A, Schillberg S, Fischer R. Immunization with the Malaria Diversity-Covering Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 DiCo in Complex with Its Natural Ligand PfRon2 Does Not Improve the In Vitro Efficacy. Front Immunol. 2017;8. https://doi.org/10.3389/fimmu.2017.00743
Sagara, I., Dicko, A., Ellis, R. D., Fay, M. P., Diawara, S. I., Assadou, M. H., et al. A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 2009;27(23):3090–3098. https://doi.org/10.1016/j.vaccine.2009.03.014
Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033
Koram KA, Adu B, Ocran J, Karikari YS, Adu-Amankwah S, Ntiri M, et al. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study. PLOS ONE. 2016;11(9):e0163066. https://doi.org/10.1371/journal.pone.0163066
Beeson JG, Kurtovic L, Dobaño C, Opi H, Chan J, Feng G, et al. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med. 2019;11(474):eaau1458. https://doi.org/10.1126/scitranslmed.aau1458
Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199–2202. https://doi.org/10.1126/science.1076071