Proteínas homólogas de unión a reticulocitos de Plasmodium falciparum involucradas en el proceso de invasión al eritrocito: Revisión de la literatura
Plasmodium falciparum reticulocyte-binding homologous proteins involved in the process of erythrocyte invasion: Literature review
Contenido principal del artículo
Resumen
Introducción. La malaria es uno de los mayores retos de salud pública a nivel mundial, es causada principalmente por los parásitos Plasmodium falciparum y Plasmodium vivax. Durante el proceso de invasión, se encuentran involucradas las proteínas homólogas de unión a reticulocitos de Plasmodium falciparum PfRH1, PfRH2a, PfRH2b, PfRH4 y PfRH5, que tras su unión a receptores específicos de membrana permiten la invasión del merozoíto al eritrocito. Objetivo. Compilar y resumir las características moleculares y estructurales de las interacciones entre las proteínas pertenecientes a la familia de proteínas homólogas de unión a reticulocitos de Plasmodium falciparum y los receptores expresados en la célula del hospedero. Método. Revisión descriptiva sobre las proteínas homólogas de unión a reticulocitos de Plasmodium falciparum involucradas en el proceso de invasión al eritrocito. Esta revisión, incluye literatura publicada hasta el año 2020 en bases de datos electrónicas especializadas en investigación biomédica. Se encontraron 105 documentos, de los cuales se seleccionaron 70 y se excluyeron 11 por no presentar los criterios de inclusión, analizando un total de 59 referencias. Conclusión. La invasión del merozoíto es mediada por interacciones específicas de los ligandos de las familias EBL y PfRH. La unión de las proteínas PfRH1 y PfRH2b a sus receptores en el eritrocito, dan lugar a la liberación de la proteína EBL-175, que junto con PfRH4 median la formación de una unión estrecha entre el parásito y los glóbulos rojos, permitiendo así, la unión de la proteína PfRH5 a basigina y la entrada del parásito a la célula del hospedero.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
World health organization. Word malaria report 2019. 2019. Disponible en https://www.who.int/publications/i/item/9789241565721
Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SSG, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium Knowlesi infections in human beings. Lancet. 2004; 363(9414):1017–24. https://doi.org/10.1016/S0140-6736(04)15836-4
Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, et al. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol. 2004; 42(12):5636–43. https://doi.org/10.1128/jcm.42.12.5636-5643.2004
Bray RS, Garnham PC. The life-cycle of primate malaria parasites. Br Med Bull. 1982; 38(2):117–22. https://doi.org/10.1093/oxfordjournals.bmb.a071746
Kappe SHI, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol. 2004; 20:29–59. https://doi.org/10.1146/annurev.cellbio.20.011603.150935
Patarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc Chem Res. 2008; 41(3):377–86. https://doi.org/10.1021/ar700120t
Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol. 2012; 42(6):567–73. https://doi.org/10.1016/j.ijpara.2012.02.011
Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA. 2010; 107(40):17327–32. https://doi.org/10.1073/pnas.1008151107
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016; 32(4):284–95. https://doi.org/10.1016/j.pt.2015.12.007
Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009; 58(1):29–35. https://doi.org/10.1016/j.parint.2008.09.005
Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe. 2011; 9(1):920. https://doi.org/10.1016/j.chom.2010.12.003
Udeinya IJ, Schmidt JA, Aikawa M, Miller LH, Green I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science. 1981; 213(4507):555–7. https://doi.org/10.1126/science.7017935
Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol. 2009;39(3):371–80. https://doi.org/10.1016/j.ijpara.2008.10.006
Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006; 124(4):755–66. https://doi.org/10.1016/j.cell.2006.02.006
Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science. 2005; 309(5739):1384–7. https://doi.org/10.1126/science.1115257
Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe. 2008; 4(1):40–51. https://doi.org/10.1016/j.chom.2008.06.001
Taylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun. 2001; 69(6):3635–45. https://dx.doi.org/10.1128/IAI.69.6.3635-3645.2001
Galinski MR, Xu M, Barnwell1 JW. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Mol Biochem Parasitol. 2000; 108(2):257–62. https://doi.org/10.1016/s0166-6851(00)00219-x
Ogun SA, Holder AA. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol. 1996; 76(1–2):321–4. https://doi.org/10.1016/0166-6851(95)02540-5
Gunalan K, Gao X, Liew KJL, Preiser PR. Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun. 2011;79(8):3421–30. https://doi.org/10.1128/IAI.00201-11
Knuepfer E, Wright KE, Kumar Prajapati S, Rawlinson TA, Mohring F, Koch M, et al. Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites. PLoS Pathog. 2019; 15(6):e1007809. https://doi.org/10.1371/journal.ppat.1007809
Triglia T, Tham W-H, Hodder A, Cowman AF. Reticulocyte Binding Protein Homologues Are Key Adhesins during Erythrocyte Invasion by Plasmodium Falciparum». Cellular Microbiology. Cell Microbiol. 2009; 11(11): 1671–1687. https://doi.org/10.1111/j.1462-5822.2009.01358.x
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017; 9(2):131–55. https://doi.org/10.2217/imt-2016-0091
Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, Jong NWM de, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLOS Pathog. 2015; 11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670
Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites. PLOS Pathog. 2008; 4(7):e1000104. https://doi.org/10.1371/journal.ppat.1000104
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS, et al. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016; 40(3):343–72. https://doi.org/10.1093/femsre/fuw001
Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med. 2001; 194(11):1571–81. https://doi.org/10.1084/jem.194.11.1571
Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol. 2005; 55(1):162–74. https://doi.org/10.1111/j.1365-2958.2004.04388.x
Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 2003; 22(5):1047–57. https://doi.org/10.1093/emboj/cdg096
Rayner JC, Galinski MR, Ingravallo P, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA. 2000; 97(17):9648–53. https://doi.org/10.1073/pnas.160469097
Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, et al. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. J Immunol. 2010; 185(10):6157–67. https://doi.org/10.4049/jimmunol.1001555
Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun. 2001; 69(2):1084–92. https://doi.org/10.1128/IAI.69.2.1084-1092.2001
Gaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. 2004; 34(13–14):1413–29. https://doi.org/10.1016/j.ijpara.2004.10.010
Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, et al Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem. 2014; 289(1):450–63. https://doi.org/10.1074/jbc.m113.520346
Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog. 2010; 6(6):e1000968. https://doi.org/10.1371/journal.ppat.1000968
Tham W-H, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB, Lopaticki S, et al. Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood. 2011; 118(7):1923–33. https://doi.org/10.1182/blood-2011-03-341305
Salinas ND, Paing MM, Tolia NH. Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity. mBio. 2014; 5(5). https://doi.org/10.1128/mBio.01606-14
Reid ME, Takakuwa Y, Conboy J, Tchernia G, Mohandas N. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood. 1990; 75(11):2229–34
Rydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. PLoS ONE. 2015; 10(1):e0115437. https://doi.org/10.1371/journal.pone.0115437
Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M, et al. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev. 2018; 32(2):111–6. https://doi.org/10.1016/j.tmrv.2018.02.004
Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun. 2011; 79(3):1107–17. https://doi.org/10.1128/IAI.01021-10
Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997; 388(6639):292–5. https://doi.org/10.1038/40888
Kaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991; 78(3):812–9
Cockburn IA, Mackinnon MJ, O’Donnell A, Allen SJ, Moulds JM, Baisor M, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA. 2004; 101(1):272–7. https://doi.org/10.1073/pnas.0305306101
Rodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: A Novel Reticulocyte-Binding Family Homolog of Plasmodium falciparum that Binds to the Erythrocyte, and an Investigation of Its Receptor. PLOS ONE. 2008; 3(10):e3300. https://doi.org/10.1371/journal.pone.0003300
Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D, et al. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci USA. 2015; 112(4):1179–84. https://doi.org/10.1073/pnas.1415466112
Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog. 2011; 7(9):e1002199. https://doi.org/10.1371/journal.ppat.1002199
Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016; 20(1):60–71. https://doi.org/10.1016/j.chom.2016.06.004
Galaway F, Yu R, Constantinou A, Prugnolle F, Wright GJ. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biol. 2019; 17(10):e3000490. https://dx.plos.org/10.1371/journal.pbio.3000490
Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun. 2017; 8:14333. doi:10.1038/ncomms14333
Ord RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J. 2014;13:326. https://doi.org/10.1186/1475-2875-13-326
Imboumy-Limoukou RK, Maghendi-Nzondo S, Kouna CL, Bounaadja L, Mbang S, Biteghe JC, et al. Immunoglobulin response to the low polymorphic Pf113 antigen in children from Lastoursville, South-East of Gabon. Acta Trop. 2016; 163:149–56. https://doi.org/10.1016/j.actatropica.2016.08.014
Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature. 2014; 515(7527):427–30. https://doi.org/10.1038/nature13715
Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016 ;159(5):481–90. https://doi.org/10.1093/jb/mvv127
Wanaguru M, Liu W, Hahn BH, Rayner JC, Wright GJ. RH5–Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc Natl Acad Sci USA. 2013; 110(51):20735–40. https://doi.org/10.1073/pnas.1320771110
Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011; 480(7378):534–7. https://doi.org/10.1038/nature10606
Zenonos ZA, Dummler SK, Müller-Sienerth N, Chen J, Preiser PR, Rayner JC, et al. Basigin is a druggable target for host-oriented antimalarial interventions. J Exp Med. 2015; 212(8):1145–51. https://doi.org/10.1084/jem.20150032
Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature. 2019; 565(7737):118–21. https://doi.org/10.1038/s41586-018-0779-6
Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA, et al. Targeting Sialic Acid Dependent and Independent Pathways of Invasion in Plasmodium falciparum. PLOS ONE. 2012; 7(1):e30251. https://doi.org/10.1371/journal.pone.0030251