La adicción a la Inteligencia Artificial: Evaluación de prevalencia y factores de riesgo en estudiantes de posgrado
La adicción a la Inteligencia Artificial: Evaluación de prevalencia y factores de riesgo en estudiantes de posgrado
Contenido principal del artículo
Resumen
La adicción a la inteligencia artificial (IA) es un problema emergente que afecta a estudiantes universitarios. Este estudio evaluó la prevalencia y los factores de riesgo asociados a la adicción a la IA en estudiantes de posgrado de tres universidades latinoamericanas. Se utilizó una metodología mixta con una muestra de 634 estudiantes de posgrado. Se aplicaron escalas validadas y se realizaron análisis estadísticos y temáticos. La prevalencia de adicción a la IA fue del 15.8%. Se encontraron diferencias significativas según el área de estudio, género y edad. Los factores de riesgo incluyeron el tiempo dedicado a la IA y los rasgos de personalidad. Los hallazgos son consistentes con estudios previos sobre adicción a la tecnología y resaltan la importancia de abordar la adicción a la IA en estudiantes de posgrado. Se discuten las implicaciones para la prevención y el tratamiento, así como las fortalezas y limitaciones del estudio.
Detalles del artículo
Referencias (VER)
Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The
relationship between addictive use of social media and video games and symptoms of psychiatric
disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30(2), 252-262.
https://doi.org/10.1037/adb0000160
Bhattacharya, S., Bashar, M. A., Srivastava, A., & Singh, A. (2019). NOMOPHOBIA: NO MObile PHone PhoBIA. Journal
of Family Medicine and Primary Care, 8(4), 1297-1300. https://doi.org/10.4103/jfmpc.jfmpc_71_19
Biolcati, R. (2018). The role of self-esteem and fear of negative evaluation in compulsive social media use.
Behaviour & Information Technology, 37(10-11), 1110-1117. https://doi.org/10.1080/014492
X.2018.1504762
Block, J. J. (2008). Issues for DSM-V: Internet addiction. American Journal of Psychiatry, 165(3), 306-307. https://
doi.org/10.1176/appi.ajp.2007.07101556
Chen, C., & Wu, C. (2020). Assessing the validity and reliability of the Chinese version of the Internet Addiction
Test. Addictive Behaviors Reports, 12, 100295. https://doi.org/10.1016/j.abrep.2020.100295
Chou, W. P., Ko, C. H., Kaufman, E. A., Crowell, S. E., Hsiao, R. C., Wang, P. W., Lin, J. J., & Yen, C. F. (2017). Association
of stress coping strategies with Internet addiction in college students: The moderating effect of
depression. Comprehensive Psychiatry, 78, 85-93. https://doi.org/10.1016/j.comppsych.2017.06.012
Davis, R. A. (2001). A cognitive-behavioral model of pathological Internet use. Computers in Human Behavior,
(2), 187-195. https://doi.org/10.1016/S0747-5632(00)00041-8
Demirci, K., Akgönül, M., & Akpinar, A. (2015). Relationship of smartphone use severity with sleep quality,
depression, and anxiety in university students. Journal of Behavioral Addictions, 4(2), 85-92. https://
doi.org/10.1556/2006.4.2015.010
Deng, L. Y., Fang, X. Y., Wan, J. J., Zhang, J. T., & Xia, C. C. (2017). The relationship between Internet addiction and
depression among migrant children and left-behind children in China. Cyberpsychology, Behavior,
and Social Networking, 20(11), 666-671. https://doi.org/10.1089/cyber.2017.0261
Dong, G., Wang, L., Du, X., & Potenza, M. N. (2018). Gender-related differences in neural responses to gaming cues
before and after gaming: Implications for gender-specific vulnerabilities to Internet gaming disorder.
Social Cognitive and Affective Neuroscience, 13(11), 1203-1214. https://doi.org/10.1093/scan/nsy084
Ekşi, H., Turgut, T., & Sevim, E. (2021). The mediating role of general procrastination behaviors in the relationship
between self-control and social media addiction in university students. The Social Science Journal,
(1), 62-75. https://doi.org/10.1016/j.soscij.2020.08.001
Griffiths, M. D. (2005). A 'components' model of addiction within a biopsychosocial framework. Journal of
Substance Use, 10(4), 191-197. https://doi.org/10.1080/14659890500114359
Griffiths, M. D. (2015). Classification and treatment of behavioural addictions. Nursing in Practice, 82, 44-46.
Gupta, A., & Gupta, A. (2019). Human dependence on artificial intelligence: Are we ready for it? International
Journal of Information Management, 49, 20-23. https://doi.org/10.1016/j.ijinfomgt.2019.03.007
Ho, R. C., Zhang, M. W., Tsang, T. Y., Toh, A. H., Pan, F., Lu, Y., Cheng, C., Yip, P. S., Lam, L. T., Lai, C. M., Watanabe,
H., & Mak, K. K. (2014). The association between Internet addiction and psychiatric co-morbidity: A
meta-analysis. BMC Psychiatry, 14, 183. https://doi.org/10.1186/1471-244X-14-183
İskender, M., & Akin, A. (2010). Social self-efficacy, academic locus of control, and Internet addiction. Computers
& Education, 54(4), 1101-1106. https://doi.org/10.1016/j.compedu.2009.10.014
Javaeed, A., Zafar, M. B., & Iqbal, M. (2021). The relationship between Internet addiction and academic
performance of medical students. Education and Health, 34(1), 32-37.
Kayiş, A. R., Satici, S. A., Yilmaz, M. F., Şimşek, D., Ceyhan, E., & Bakioğlu, F. (2016). Big five-personality trait and
Internet addiction: A meta-analytic review. Computers in Human Behavior, 63, 35-40. https://doi.
org/10.1016/j.chb.2016.05.012
Kim, J., Hong, H., Lee, J., & Hyun, M. H. (2018). Effects of academic stress and Internet use on academic
procrastination among Korean adolescents. Clinical Psychology & Psychotherapy, 25(5), 590-596.
https://doi.org/10.1002/cpp.2199
Kim, Y., & Seo, H. (2015). Mediating effect of academic procrastination between academic stress and college
life satisfaction. Indian Journal of Science and Technology, 8(21), 1-5. https://doi.org/10.17485/
ijst/2015/v8i21/78956
Kircaburun, K., Kokkinos, C. M., Demetrovics, Z., Király, O., Griffiths, M. D., & Çolak, T. S. (2020). Problematic
online behaviors among adolescents and emerging adults: Associations between cyberbullying
perpetration, problematic social media use, and psychosocial factors. International Journal of Mental
Health and Addiction, 18(4), 891-908. https://doi.org/10.1007/s11469-018-9894-8
Kuss, D. J., van Rooij, A. J., Shorter, G. W., Griffiths, M. D., & van de Mheen, D. (2014). Internet addiction in
adolescents: Prevalence and risk factors. Computers in Human Behavior, 29(5), 1987-1996. https://
doi.org/10.1016/j.chb.2013.04.002
Lachmann, B., Sindermann, C., Sariyska, R. Y., Luo, R., Melchers, M. C., Becker, B., Cooper, A. J., & Montag, C.
(2018). The role of empathy and life satisfaction in Internet and smartphone use disorder. Frontiers
in Psychology, 9, 398. https://doi.org/10.3389/fpsyg.2018.00398
Liang, L., Zhou, D., Yuan, C., Shao, A., & Bian, Y. (2017). Gender differences in the relationship between Internet
addiction and depression: A cross-lagged study in Chinese adolescents. Computers in Human
Behavior, 63, 463-470. https://doi.org/10.1016/j.chb.2016.04.043
Lv, W., Wu, Q., & Liu, X. (2020). Overlap of problematic Internet use and Internet gaming disorder and its
association with psychiatric symptoms in Chinese college students: A cross-sectional study. BMC
Psychiatry, 20(1), 484. https://doi.org/10.1186/s12888-020-02898-1
Mei, S., Yau, Y. H., Chai, J., Guo, J., & Potenza, M. N. (2016). Problematic Internet use, well-being, self-esteem
and self-control: Data from a high-school survey in China. Addictive Behaviors, 61, 74-79. https://doi.
org/10.1016/j.addbeh.2016.05.009
Nam, C. R., & Lee, D. H. (2020). The effects of a virtual reality-based social skills training program on social skills, selfefficacy, social anxiety, and depression among adolescents with autism spectrum disorder. Cyberpsychology,
Behavior, and Social Networking, 23(12), 856-860. https://doi.org/10.1089/cyber.2020.0284
Panova, T., & Carbonell, X. (2018). Is smartphone addiction really an addiction? Journal of Behavioral Addictions,
(2), 252-259. https://doi.org/10.1556/2006.7.2018.49
Park, S., Jeon, H. J., Bae, J. N., Seong, S. J., & Hong, J. P. (2016). Prevalence and psychiatric comorbidities of
Internet addiction in a nationwide sample of Korean adults. Psychiatry Investigation, 14(6), 879-882.
https://doi.org/10.4306/pi.2017.14.6.879
Pierceall, E. A., Gough, D., & Heasley, S. (2021). Are smartphones the new security blankets? Examining the role
of emotion regulation, stress, and problematic smartphone use. Addictive Behaviors Reports, 14,
https://doi.org/10.1016/j.abrep.2021.100366
Samaha, M., & Hawi, N. S. (2016). Relationships among smartphone addiction, stress, academic performance,
and satisfaction with life. Computers in Human Behavior, 57, 321-325. https://doi.org/10.1016/j.
chb.2015.12.045
Smith, A., & Anderson, M. (2018). Social media use in 2018. Pew Research Center. https://www.pewresearch.
org/internet/2018/03/01/social-media-use-in-2018/
Su, W., Han, X., Jin, C., Yan, Y., & Potenza, M. N. (2019). Are males more likely to be addicted to the Internet
than females? A meta-analysis involving 34 global jurisdictions. Computers in Human Behavior, 99,
-100. https://doi.org/10.1016/j.chb.2019.04.021
Tang, J., Yu, Y., Du, Y., Ma, Y., Zhang, D., & Wang, J. (2014). Prevalence of Internet addiction and its association
with stressful life events and psychological symptoms among adolescent Internet users. Addictive
Behaviors, 39(3), 744-747. https://doi.org/10.1016/j.addbeh.2013.12.010
Tang, J., Ma, Y., Lewis, S. P., Chen, R., Clifford, A., Ammerman, B. A., Gazimbi, M. M., Byrne, A., Wu, Y., Lu, X.,
Chang, H., Kang, C., Tiemeier, H., & Yu, Y. (2021). Association of Internet addiction with nonsuicidal
self-injury among adolescents in China. JAMA Network Open, 3(6), e206863. https://doi.org/10.1001/
jamanetworkopen.2020.6863
Throuvala, M. A., Griffiths, M. D., Rennoldson, M., & Kuss, D. J. (2019). Motivational processes and dysfunctional
mechanisms of social media use among adolescents: A qualitative focus group study. Computers in
Human Behavior, 93, 164-175. https://doi.org/10.1016/j.chb.2018.12.012
Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior,
(3), 237-244. https://doi.org/10.1089/cpb.1998.1.237