Effects of Angiotensin II Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors on COVID-19: A narrative review of the literature

Palabras clave: Coronavirus, Infecciones por Coronavirus, Virus del SARS, Hipertensión, Inhibidores de la Enzima Convertidora de Angiotensina

Resumen

Introducción: El surgimiento y diseminación del SARS-CoV-2 (Coronavirus tipo 2 del síndrome respiratorio agudo severo) actualmente afecta la mayoría de países a lo largo del globo. La asociación entre este virus y la regulación positiva de la enzima convertidora de angiotensina 2 (ACE2) ha sido sugerida como un factor potencial en el desarrollo de la Enfermedad por coronavirus- 19 (COVID- 19). Objetivo: Describir la relación entre algunos tratamientos antihipertensivos y COVID- 19. Métodos: Se realizó una revisión con los componentes de la estrategia PIO (Población, Intervención, Resultados). Se incluyó literatura de los últimos 20 años disponible en las bases de datos centrales PubMed, Web of Science, Scopus y Embase. Fueron incluidos todos los artículos relevantes que describen la relación epidemiológica entre SARS-CoV-2 e hipertensión, el tratamiento y el desenlace de los pacientes quienes tienen esta comorbilidad, así como la relación entre el Eje Renina-Angiotensina-Aldosterona y COVID-19. Resultados: Se encontraron inicialmente 292 artículos en las bases de datos, los cuales fueron analizados para finalmente seleccionar 17 artículos, incluyendo exámenes in vivo e in vitro, ensayos clínicos y estudios epidemiológicos relacionados con el tema analizado. Conclusión: Debido a los beneficiosos efectos sistémicos del tratamiento antihipertensivo cuyo blanco es el sistema  Renina-Angiotensina- Aldosterona, y a la falta de evidencia acerca de estos medicamentos en cuanto a la inducción de  SARS-CoV-2, no se recomienda suspender o contraindicar el tratamiento con estos fármacos en pacientes hipertensos positivos para COVID-19 a menos que haya una indicación clínica

Descargas

La descarga de datos todavía no está disponible.

Citas

Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-Ramírez H, Arturo Rodríguez-Sabogal I, Álvarez-Moreno C. A new emerging zoonotic virus of concern: the 2019 novel Coronavirus (COVID-19). Infectio. 2020;24(3):187-92. http://dx.doi.org/10.22354/in.v24i3.848

Stedman KM. Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes. Annu Rev Virol. 2015;2(1):203–17. https://doi.org/10.1146/annurev-virology-100114-055127

Syed A. Coronavirus: A Mini-Review. Int J Curr Res Med Sci. 2020;6(1):8–10. http://dx.doi.org/10.22192/ijcrms.2020.06.01.002

Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis. 2020;26(2):191–8. https://dx.doi.org/10.3201/eid2602.190697

Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT, Baric RS. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. Subbarao K, editor. MBio. 2018;9(5):e01753-18. https://doi.org/10.1128/mBio.01753-18

Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Bashir N, Xue M. Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options. Kraft CS, editor. J Clin Microbiol. 2020;58(5): e00187-20. https://doi.org/10.1128/JCM.00187-20.

Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9(3):186. https://doi.org/10.3390/pathogens9030186.

Madhugiri R, Fricke M, Marz M, Ziebuhr J. Coronavirus cis-Acting RNA Elements. Adv Virus Res. 2016;96:217-63. https://doi.org/10.1016/bs.aivir.2016.08.007.

Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410–7. https://doi.org/10.17179/excli2020-1167.

Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell. 2020;78(4):779-784.e5. https://doi.org/10.1016/j.molcel.2020.04.022

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–80. https://doi.org/10.1016/j.cell.2020.02.052.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7

Touyz RM, Li H, Delles C. ACE2 the Janus-faced protein – from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19. Clin Sci. 2020;134(7):747–50. https://doi.org/10.1042/cs20200363.

Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circulation Journal. 2013;77(2):301-8. https://doi.org/10.1253/circj.cj-12-1544.

Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135–40. https://doi.org/10.1016/j.bbrc.2020.03.044.

Atri D, Siddiqi HK, Lang J, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: A Current Review of the Virology, Clinical Epidemiology, Cardiac and Other Clinical Manifestations and Potential Therapeutic Strategies. JACC Basic to Transl Sci. 2020;443. https://doi.org/10.1016/j.jacbts.2020.04.002.

Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097–100. https://doi.org/10.1093/cvr/cvaa157.

Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012;7(4):e35876. https://doi.org/10.1371/journal.pone.0035876.

Liu PP, Blet A, Smyth D, Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation. 2020;142(1):68-78. https://doi.org/10.1161/CIRCULATIONAHA.120.047549.

Kreutz R, Algharably EA, Azizi M, Dobrowolski P, Guzik T, Januszewicz A, Persu A, Prejbisz A, Riemer TG, Wang JG, Burnier M. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res. 2020;116(10):1688-1699. https://doi.org/10.1093/cvr/cvaa097.

Akobeng AK. Principles of evidence based medicine. Archives of disease in childhood 2005;90(8):837-40. http://dx.doi.org/10.1136/adc.2005.071761

Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: Clinical applications and controversies. Nature Reviews Endocrinology. 2015;11(4):242-52. https://doi.org/10.1038/nrendo.2015.6.

Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circulation Research. 2016;118(8):1313-26. https://doi.org/10.1161/CIRCRESAHA.116.307708.

Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the angiotensin converting enzyme 2-angiotensin (1-7)-Mas receptor axis: Fetal programing, sex differences, and intracellular pathways. Frontiers in Endocrinology. 2014;4:201. https://doi.org/10.3389/fendo.2013.00201.

Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1-7: Novel therapeutic targets. Nature Reviews Cardiology. 2014;11(7):413-26. https://doi.org/10.1038/nrcardio.2014.59.

Cheng H, Wang Y, Wang G-Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92(7):726-730. https://doi.org/10.1002/jmv.25785.

Tikellis C, Bernardi S, Burns WC. Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol Hypertens. 2011;20(1):62–8. https://doi.org/10.1155/2012/256294

Li S-R, Tang Z-J, Li Z-H, Liu X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis. 2020;39(6):1021–6. https://doi.org/10.1007/s10096-020-03883-y.

South AM, Diz D, Chappell MC. COVID-19, ACE2 and the Cardiovascular Consequences. Am J Physiol Hear Circ Physiol. 2020;318(5):H1084–90. https://doi.org/10.1152/ajpheart.00217.2020.

Hanff TC, Harhay MO, Brown TS, Cohen JB, Mohareb AM. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System-a Call for Epidemiologic Investigations. Clin Infect Dis. 2020; ciaa329. https://doi.org/10.1093/cid/ciaa329.

Akhmerov A, Marban E. COVID-19 and the Heart. Circ Res. 2020;126(10):1443–55. https://doi.org/10.1161/CIRCRESAHA.120.317055.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, Fan J. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11(2):216–28. https://doi.org/10.14336/ad.2020.0228.

Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, Liu XQ, Chen RC, Tang CL, Wang T, Ou CQ. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur Respir J. 2020;55(5):2000547. https://doi.org/10.1183/13993003.00547-2020.

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, Wang T. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. https://doi.org/10.1136/bmj.m1091.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. https://doi.org/10.1016/j.ijid.2020.03.017.

Lippi G, Wong J, Henry BM. Hypertension in Patients With Coronavirus Disease 2019 (COVID-19): A Pooled Analysis. Polish Arch Intern Med. 2020;130(4):304–9. https://doi.org/10.20452/pamw.15272.

Wang L, He W, Yu X, Hu D, Bao M, Liu H, Zhou J, Jiang H.. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639–45. https://doi.org/10.1016/j.jinf.2020.03.019

Turner AJ, Tipnis SR, Guy JL, Rice GI, Hooper NM. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002;80(4):346–53. https://doi.org/10.1139/y02-021.

Ferrario CM, Jessup J, Gallagher PE, Averill DB, Brosnihan KB, Tallant EA, Smith RD, Chappell MC. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney International. 2005;68(5):2189-96. https://doi.org/10.1111/j.1523-1755.2005.00675.x.

Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, Wu D, Chen F, Sun J, Chang C. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun. 2020;102463. https://doi.org/10.1016/j.jaut.2020.102463.

Rico-Mesa JS, White A, Anderson AS. Outcomes in Patients with COVID-19 Infection Taking ACEI/ARB. Curr Cardiol Rep. 2020;22(5):31. https://doi.org/10.1007/s11886-020-01291-4.

Hulot J-S. COVID-19 in patients with cardiovascular diseases. Arch Cardiovasc Dis. 2020;113(4):225–6. https://doi.org/10.1016/j.acvd.2020.03.009.

Luca Roncati, Graziana Gallo, Antonio Manenti BP. Roncati L, Gallo G, Manenti A, Palmieri B. Renin-angiotensin system: The unexpected flaw inside the human immune system revealed by SARS-CoV-2. 2020;140:109686. https://doi.org/10.1016/j.mehy.2020.109686.

Esler M, Esler D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens. 2020;38(5):781–2. https://doi.org/10.1097/hjh.0000000000002450.

Singh AK, Gupta R, Misra A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):283–7. https://doi.org/10.1016/j.dsx.2020.03.016.

Muniyappa R GS Muniyappa R, Gubbi S. Perspective: COVID-19 Pandemic, Corona Viruses, and Diabetes Mellitus. Am J Physiol Metab. 2020;318(5):E736-41. https://doi.org/10.1152/ajpendo.00124.2020.

Battistoni A, Volpe M. Might renin-angiotensin system blockers play a role in the COVID-19 pandemic? Eur Hear journal Cardiovasc Pharmacother. 2020. https://doi.org/10.1093/ehjcvp/pvaa030

Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. Elife. 2020;9:e57278. https://doi.org/10.7554/elife.57278

Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75(6):1382–1385. https://doi.org/10.1161/HYPERTENSIONAHA.120.15082.

Malha L, Mueller FB, Pecker MS, Mann SJ, August P, Feig PU. COVID-19 and the Renin-Angiotensin System. Kidney Int Reports. 2020;5(5):563–5. https://doi.org/10.1016/j.ekir.2020.03.024.

Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, Yang R, Di W, Wang Z, Li Z, Gao H. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9(1):757–60. https://doi.org/10.1080/22221751.2020.1746200.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032

Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J, Liu YM, Zhao YC, Huang X, Lin L, Xia M. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res. 2020. https://doi.org/10.1161/CIRCRESAHA.120.317134

Talreja H, Tan J, Dawes M, Supershad S, Rabindranath K, Fisher J, Valappil S, Wong L, van der Merwe W, Paton J.. A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). N Z Med J. 2020;133(1512):85–7.

Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, Carmona-Rubio AE, Jacob M, Procop GW, Harrington S, Milinovich A. Association of Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 2020 May 5;e201855. https://doi.org/10.1001/jamacardio.2020.1855

Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? J Am Heart Assoc. 2020;9(7):e016509. https://doi.org/10.1161/JAHA.120.016509.

Publicado
2020-11-26
Cómo citar
Muñoz Loaiza, J., Infante, H., Pérez Mahecha, B., Herrera Cardona, J., & Salamanca, D. (2020). Effects of Angiotensin II Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors on COVID-19: A narrative review of the literature. Revista Investigación En Salud Universidad De Boyacá, 7(2). https://doi.org/10.24267/23897325.473