Estrategias para la evaluación de extractos de polifenoles en modelos in vitro de cáncer de vías digestivas

Strategies for Evaluation of Polyphenol Extracts on in vitro Models of Digestive Tract Cancer

Contenido principal del artículo

Atilio Junior Ferrebuz-Cardozo
Zilpa Adriana Sánchez-Quitian
Ruby Alba Elizabeth Márquez-Salcedo
Lady Johanna Carreño-Saltarén

Resumen

Introducción: Los polifenoles son compuestos que se encuentran naturalmente en alimentos como frutas, verduras, té, vino y chocolates, a los que se les atribuyen beneficios a la salud humana por su capacidad antioxidante. El cáncer de las vías digestivas se encuentra entre la tercera y quinta causas de muerte para la población, por lo que se ha incrementado el interés por realizar los estudios dirigidos a encontrar compuestos polifenólicos que ayuden en su prevención o tratamiento. Objetivo: Identificar las estrategias disponibles para la evaluación de polifenoles en células de cáncer de vías digestivas. Metodología: Búsqueda de literatura en bases de datos como Ovid, Pubmed, Science Direct y Elsevier Journal. Se seleccionaron artículos en los cuales se reporta el efecto biológico de los polifenoles sobre líneas celulares de cáncer de vías digestivas publicados entre 2012 y 2022. Resultados: Varios estudios han reportado el uso de un buen número de líneas celulares como modelos in vitro para estudios de polifenoles en cáncer y han resaltado las líneas AGS y HT-29, además de técnicas para la caracterización de los polifenoles, como el ensayo 2,2-Difenil-I-Picril Hidrazilo (DPPH). Sin embargo, para evaluar el efecto biológico se identifican diversas pruebas que deben analizarse antes de su implementación. Conclusiones: En la literatura se identifica que existen varias alternativas y estrategias para la evaluación de extractos vegetales en cultivos in vitro de cáncer de vías digestivas; no obstante, antes de pasar al diseño experimental, deben tenerse en cuenta una serie de consideraciones para garantizar la utilidad de los resultados.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Maldonado Celis ME, Urango Marchena LA, Arismendi Bustamante LJ. Propiedades quimiopreventivas del mango y la manzana en el cańcer de colon. Salud(i)Ciencia. 2014;20(6):614-8.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today [Internet]. 2020.

Corrales-Bernal A, Urango LA, Rojano B, Maldonado ME. Efectos in vitro e in vivo de la pulpa de mango (Mangifera indica cv. Azúcar) en la carcinogénesis de colon. Arch Latinoam Nutr. 2014;64:16-23.

Ferruelo A, Romero I, Cabrera PM, Arance I, Andrés G, Angulo JC. Los efectos de resveratrol y otros polifenoles del vino sobre la proliferación, apoptosis y expresión de receptor androgénico en células LNCaP. Actas Urol Esp. 2014;38:397-404. DOI: https://doi.org/10.1016/j.acuro.2014.02.012

Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients. 2016;8(11):731. https://doi.org/10.3390/nu8110731 DOI: https://doi.org/10.3390/nu8110731

Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317—333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x DOI: https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Mol Basel Switz. 2016;21(7):901. https://doi.org/10.3390/molecules21070901 DOI: https://doi.org/10.3390/molecules21070901

Bouyahya A, Omari NE, El Hachlafi N, Jemly ME, Hakkour M, Balahbib A, et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Mol Basel Switz. 2022;27(10). https://doi.org/10.3390/molecules27103286 DOI: https://doi.org/10.3390/molecules27103286

Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. https://doi.org/10.1093/database/bap024 DOI: https://doi.org/10.1093/database/bap024

Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Knox C, Llorach R, Eisner R, et al. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database. 2012;2012:bas031. https://doi.org/10.1093/database/bas031 DOI: https://doi.org/10.1093/database/bas031

Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-Lobato P, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database. 2013;2013:bat070. https://doi.org/10.1093/database/bat070 DOI: https://doi.org/10.1093/database/bat070

Stepanenko AA, Dmitrenko V V. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. diciembre de 2015;574(2):193-203. https://doi.org/10.1016/j.gene.2015.08.009 DOI: https://doi.org/10.1016/j.gene.2015.08.009

Angius F, Floris A. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol Vitro Int J Publ Assoc BIBRA. marzo de 2015;29(2):314-9. https://doi.org/10.1016/j.tiv.2014.11.009 DOI: https://doi.org/10.1016/j.tiv.2014.11.009

Gomez Perez M, Fourcade L, Mateescu MA, Paquin J. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal Biochem. octubre de 2017;535:43-6. https://doi.org/10.1016/j.ab.2017.07.027 DOI: https://doi.org/10.1016/j.ab.2017.07.027

Karakaş D, Ari F, Ulukaya E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk J Biol Turk Biyol Derg. 2017;41(6):919-25. https://doi.org/10.3906/biy-1703-104 DOI: https://doi.org/10.3906/biy-1703-104

Cassiem W, de Kock M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement Altern Med. 2019;19(1):32. https://doi.org/10.1186/s12906-019-2437-4 DOI: https://doi.org/10.1186/s12906-019-2437-4

Patra S, Pradhan B, Nayak R, Behera C, Das S, Patra SK, et al. Dietary polyphenols in chemoprevention and synergistic effect in cancer: Clinical evidences and molecular mechanisms of action. Phytomedicine Int J Phytother Phytopharm. septiembre de 2021;90:153554. https://doi.org/10.1016/j.phymed.2021.153554 DOI: https://doi.org/10.1016/j.phymed.2021.153554

Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients [Internet]. 27 de octubre de 2021;13(11). https://doi.org/10.3390/nu13113834 DOI: https://doi.org/10.3390/nu13113834

Miyata Y, Shida Y, Hakariya T, Sakai H. Anti-Cancer Effects of Green Tea Polyphenols Against Prostate Cancer. Mol Basel Switz. 2019;24(1):193. https://doi.org/10.3390/molecules24010193 DOI: https://doi.org/10.3390/molecules24010193

Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, et al. An Overview of In Vitro, In Vivo, and Computational Techniques for Cancer-Associated Angiogenesis Studies. BioMed Res Int. 2020;2020:8857428. https://doi.org/10.1155/2020/8857428 DOI: https://doi.org/10.1155/2020/8857428

Hosseini FS, Noroozi Karimabad M, Hajizadeh MR, Khoshdel A, Khanamani Falahati-Pour S, Mirzaei MR, et al. Evaluating of Induction of Apoptosis by Cornus mass L. Extract in the Gastric Carcinoma Cell Line (AGS). Asian Pac J Cancer Prev APJCP. 2019;20(1):123-30. https://doi.org/10.31557/APJCP.2019.20.1.123 DOI: https://doi.org/10.31557/APJCP.2019.20.1.123

Desta KT, Kim GS, Abd El-Aty AM, Raha S, Kim M-B, Jeong JH, et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC-ESI-MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1053:1-8. https://doi.org/10.1016/j.jchromb.2017.03.035 DOI: https://doi.org/10.1016/j.jchromb.2017.03.035

Pagliara V, Nasso R, Di Donato P, Finore I, Poli A, Masullo M, et al. Lemon Peel Polyphenol Extract Reduces Interleukin-6-Induced Cell Migration, Invasiveness, and Matrix Metalloproteinase-9/2 Expression in Human Gastric Adenocarcinoma MKN-28 and AGS Cell Lines. Biomolecules. 2019;9(12):833. https://doi.org/10.3390/biom9120833 DOI: https://doi.org/10.3390/biom9120833

Hallmann E, Kazimierczak R, Marszalek K, Drela N, Kiernozek E, Toomik P, et al. The Nutritive Value of Organic and Conventional White Cabbage (Brassica Oleracea L. Var. Capitata) and Anti-Apoptotic Activity in Gastric Adenocarcinoma Cells of Sauerkraut Juice Produced Therof. J Agric Food Chem. septiembre de 2017;65(37):8171-83. https://doi.org/10.1021/acs.jafc.7b01078 DOI: https://doi.org/10.1021/acs.jafc.7b01078

Chen D-L, Sheng H, Zhang D-S, Jin Y, Zhao B-T, Chen N, et al. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol Cancer. 15 de diciembre de 2021;20(1):166. https://doi.org/10.1186/s12943-021-01475-8 DOI: https://doi.org/10.1186/s12943-021-01475-8

Liu ML, Zhang SJ. Effects of resveratrol on the protein expression of survivin and cell apoptosis in human gastric cancer cells. J BUON Off J Balk Union Oncol. 2014;19(3):713-7.

Yang Y, Huang X, Chen S, Ma G, Zhu M, Yan F, et al. Resveratrol induced apoptosis in human gastric carcinoma SGC-7901 cells via activation of mitochondrial pathway. Asia Pac J Clin Oncol. 2018;14(5):e317-24. https://doi.org/10.1111/ajco.12841 DOI: https://doi.org/10.1111/ajco.12841

Yang T, Zhang J, Zhou J, Zhu M, Wang L, Yan L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomed Pharmacother Biomedecine Pharmacother. 2018;99:766-73. https://doi.org/10.1016/j.biopha.2018.01.153 DOI: https://doi.org/10.1016/j.biopha.2018.01.153

Nowdijeh AA, Moosavi MA, Hosseinzadeh S, Soleimani M, Sabouni F, Hosseini-Mazinani M. Anti-oxidant and Selective Anti-proliferative Effects of the Total Cornicabra Olive Polyphenols on Human Gastric MKN45 Cells. Iran J Biotechnol. 2019;17(1):e1967. https://doi.org/10.21859/ijb.1967 DOI: https://doi.org/10.21859/ijb.1967

Liu B, Li Z. Black Currant (Ribes nigrum L.) Extract Induces Apoptosis of MKN-45 and TE-1 Cells Through MAPK- and PI3K/Akt-Mediated Mitochondrial Pathways. J Med Food. 2016;19(4):365-73. https://doi.org/10.1089/jmf.2015.3521 DOI: https://doi.org/10.1089/jmf.2015.3521

Arcone R, Palma M, Pagliara V, Graziani G, Masullo M, Nardone G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-alpha induced Matrix Metalloproteinase-9/2. Biochim Open. 2016;3:56-63. https://doi.org/10.1016/j.biopen.2016.10.002 DOI: https://doi.org/10.1016/j.biopen.2016.10.002

Jing X, Cheng W, Wang S, Li P, He L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol Rep. 2016;35(1):472-8. https://doi.org/10.3892/or.2015.4384 DOI: https://doi.org/10.3892/or.2015.4384

Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother Biomedecine Pharmacother. agosto de 2020;128:110245. https://doi.org/10.1016/j.biopha.2020.110245 DOI: https://doi.org/10.1016/j.biopha.2020.110245

Mieszala K, Rudewicz M, Gomulkiewicz A, Ratajczak-Wielgomas K, Grzegrzolka J, Dziegiel P, et al. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol Lett. 2018/02/12 ed. 2018;15(4):5825-32. https://doi.org/10.3892/ol.2018.8022 DOI: https://doi.org/10.3892/ol.2018.8022

Venancio VP, Cipriano PA, Kim H, Antunes LMG, Talcott ST, Mertens-Talcott SU. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct. enero de 2017;8(1):307-14. https://doi.org/10.1039/c6fo01498d DOI: https://doi.org/10.1039/C6FO01498D

Emanuele S, Notaro A, Palumbo Piccionello A, Maggio A, Lauricella M, D’Anneo A, et al. Sicilian Litchi Fruit Extracts Induce Autophagy versus Apoptosis Switch in Human Colon Cancer Cells. Nutrients. 12 de octubre de 2018;10(10):1490. https://doi.org/10.3390/nu10101490 DOI: https://doi.org/10.3390/nu10101490

Kim D-H, Park K-W, Chae IG, Kundu J, Kim E-H, Kundu JK, et al. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol Carcinog. junio de 2016;55(6):1096-110. https://doi.org/10.1002/mc.22353 DOI: https://doi.org/10.1002/mc.22353

Signorelli P, Fabiani C, Brizzolari A, Paroni R, Casas J, Fabrias G, et al. Natural grape extracts regulate colon cancer cells malignancy. Nutr Cancer. 2015;67(3):494-503. https://doi.org/10.1080/01635581.2015.1004591 DOI: https://doi.org/10.1080/01635581.2015.1004591

Chalons P, Courtaut F, Limagne E, Chalmin F, Cantos-Villar E, Richard T, et al. Red Wine Extract Disrupts Th17 Lymphocyte Differentiation in a Colorectal Cancer Context. Mol Nutr Food Res. abril de 2020;e1901286. https://doi.org/10.1002/mnfr.201901286 DOI: https://doi.org/10.1002/mnfr.201901286

Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer. 18 de diciembre de 2021;20(1):167. https://doi.org/10.1186/s12943-021-01474-9 DOI: https://doi.org/10.1186/s12943-021-01474-9

Sharma N, Sharma A, Bhatia G, Landi M, Brestic M, Singh B, et al. Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential. Antioxid Basel Switz. octubre de 2019;8(10). https://doi.org/10.3390/antiox8100492 DOI: https://doi.org/10.3390/antiox8100492

Gao Y, Li W, Jia L, Li B, Chen YC, Tu Y. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3’-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem Biophys Res Commun. agosto de 2013;438(2):370-4. https://doi.org/10.1016/j.bbrc.2013.07.078 DOI: https://doi.org/10.1016/j.bbrc.2013.07.078

Stavrou IJ, Christou A, Kapnissi-Christodoulou CP. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 15 de diciembre de 2018;269:355-74. https://doi.org/10.1016/j.foodchem.2018.06.152 DOI: https://doi.org/10.1016/j.foodchem.2018.06.152

Ruskovska T, Maksimova V, Milenkovic D. Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective. Br J Nutr. 14 de febrero de 2020;123(3):241-54. https://doi.org/10.1017/S0007114519002733 DOI: https://doi.org/10.1017/S0007114519002733

Mutungi MM, Muema FW, Kimutai F, Xu Y-B, Zhang H, Chen G-L, et al. Antioxidant and Antiproliferative Potentials of Ficus glumosa and Its Bioactive Polyphenol Metabolites. Pharm Basel Switz. 15 de marzo de 2021;14(3). https://doi.org/10.3390/ph14030266 DOI: https://doi.org/10.3390/ph14030266

Merighi S, Travagli A, Tedeschi P, Marchetti N, Gessi S. Antioxidant and Antiinflammatory Effects of Epilobium parviflorum, Melilotus officinalis and Cardiospermum halicacabum Plant Extracts in Macrophage and Microglial Cells. Cells. 8 de octubre de 2021;10(10). https://doi.org/10.3390/cells10102691 DOI: https://doi.org/10.3390/cells10102691

Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N. Antioxidant and Anticholinesterase Activities of Extracts and Phytochemicals of Syzygium antisepticum Leaves. Mol Basel Switz. 30 de mayo de 2021;26(11). https://doi.org/10.3390/molecules26113295 DOI: https://doi.org/10.3390/molecules26113295

Fonseca-Hernández D, Lugo-Cervantes EDC, Escobedo-Reyes A, Mojica L. Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Mol Basel Switz. 6 de noviembre de 2021;26(21). https://doi.org/10.3390/molecules26216716 DOI: https://doi.org/10.3390/molecules26216716

Song S, Lee Y-M, Lee YY, Yeum K-J. Oat (Avena sativa) Extract against Oxidative Stress-Induced Apoptosis in Human Keratinocytes. Mol Basel Switz. 13 de septiembre de 2021;26(18). https://doi.org/10.3390/molecules26185564 DOI: https://doi.org/10.3390/molecules26185564

Zhu K-X, Lian C-X, Guo X-N, Peng W, Zhou H-M. Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chem. 2011;126(3):1122-6. https://doi.org/10.1016/j.foodchem.2010.11.144 DOI: https://doi.org/10.1016/j.foodchem.2010.11.144

Ramos A, Visozo A, Piloto J, García A, Rodríguez CA, Rivero R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J Ethnopharmacol. agosto de 2003;87(2-3):241-6. https://doi.org/10.1016/s0378-8741(03)00156-9 DOI: https://doi.org/10.1016/S0378-8741(03)00156-9

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. diciembre de 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Wang Y, Chu F, Lin J, Li Y, Johnson N, Zhang J, et al. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification. J Ethnopharmacol. 28 de octubre de 2021;279:114399. https://doi.org/10.1016/j.jep.2021.114399 DOI: https://doi.org/10.1016/j.jep.2021.114399

Deng P, Li K, Gu F, Zhang T, Zhao W, Sun M, et al. LINC00242/miR-1-3p/G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis. Mol Med Camb Mass. 29 de enero de 2021;27(1):9. https://doi.org/10.1186/s10020-020-00259-y DOI: https://doi.org/10.1186/s10020-020-00259-y

Quintana-Castillo JC, Ávila-Gómez IC, Ceballos-Ruiz JF, Vargas-Muñoz LJ, Estrada-Gómez S. Efecto citotóxico de fosfolipasas A2 del veneno de Crotalus durissus cumanensis de Colombia. Rev Investig En Salud Univ Boyacá. 24 de julio de 2017;4(1):16-37. https://doi.org/10.24267/23897325.194 DOI: https://doi.org/10.24267/23897325.194

Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271-7. https://doi.org/10.1016/0022-1759(86)90368-6 DOI: https://doi.org/10.1016/0022-1759(86)90368-6

Banfalvi G. Methods to detect apoptotic cell death. Apoptosis. 2017;22(2):306-23. https://doi.org/10.1007/s10495-016-1333-3 DOI: https://doi.org/10.1007/s10495-016-1333-3

Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. junio de 2018;2018(6). https://doi.org/10.1101/pdb.prot095505 DOI: https://doi.org/10.1101/pdb.prot095505

van Tonder A, Joubert AM, Cromarty AD. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. febrero de 2015;8:47. https://doi.org/10.1186/s13104-015-1000-8 DOI: https://doi.org/10.1186/s13104-015-1000-8

Abel SDA, Baird SK. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food Chem. febrero de 2018;241:70-8. https://doi.org/10.1016/j.foodchem.2017.08.083 DOI: https://doi.org/10.1016/j.foodchem.2017.08.083

Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis Int J Program Cell Death. agosto de 2022;27(7-8):482-508. https://doi.org/10.1007/s10495-022-01735-y DOI: https://doi.org/10.1007/s10495-022-01735-y

Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol Clifton NJ. 2014;1180:31-43. https://doi.org/10.1007/978-1-4939-1050-2_3 DOI: https://doi.org/10.1007/978-1-4939-1050-2_3

Errami Y, Naura AS, Kim H, Ju J, Suzuki Y, El-Bahrawy AH, et al. Apoptotic DNA fragmentation may be a cooperative activity between caspase-activated deoxyribonuclease and the poly(ADP-ribose) polymerase-regulated DNAS1L3, an endoplasmic reticulum-localized endonuclease that translocates to the nucleus during apoptosis. J Biol Chem. 1 de febrero de 2013;288(5):3460-8. https://doi.org/10.1074/jbc.M112.423061 DOI: https://doi.org/10.1074/jbc.M112.423061

Jamali T, Kavoosi G, Safavi M, Ardestani SK. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep. 25 de octubre de 2018;8(1):15787. https://doi.org/10.1038/s41598-018-34055-w DOI: https://doi.org/10.1038/s41598-018-34055-w

Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. agosto de 2017;24(8):1380-9. https://doi.org/10.1038/cdd.2017.44 DOI: https://doi.org/10.1038/cdd.2017.44

Kesavardhana S, Malireddi RKS, Kanneganti T-D. Caspases in Cell Death, Inflammation, and Pyroptosis. Annu Rev Immunol. 26 de abril de 2020;38:567-95. https://doi.org/10.1146/annurev-immunol-073119-095439 DOI: https://doi.org/10.1146/annurev-immunol-073119-095439

Cheng K-C, Wang C-J, Chang Y-C, Hung T-W, Lai C-J, Kuo C-W, et al. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J Food Drug Anal. 2020;28(1):84-93. https://doi.org/10.1016/j.jfda.2019.06.002 DOI: https://doi.org/10.1016/j.jfda.2019.06.002

Qin Y, Ma Z, Dang X, Li W, Ma Q. Effect of resveratrol on proliferation and apoptosis of human pancreatic cancer MIA PaCa-2 cells may involve inhibition of the Hedgehog signaling pathway. Mol Med Rep. noviembre de 2014;10(5):2563-7. https://doi.org/10.3892/mmr.2014.2511 DOI: https://doi.org/10.3892/mmr.2014.2511

Xu S, Yao J, Ainiwaer M, Hong Y, Zhang Y. Analysis of Bacterial Community Structure of Activated Sludge from Wastewater Treatment Plants in Winter. BioMed Res Int. 2018;2018:1-8. https://doi.org/10.1155/2018/8278970 DOI: https://doi.org/10.1155/2018/8278970

Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D, et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res CR. enero de 2017;36(1):19. https://doi.org/10.1186/s13046-016-0487-8 DOI: https://doi.org/10.1186/s13046-016-0487-8

Citado por