Efecto de la recuperación activa en la potencia pico y el lactato, después de protocolos de sprints repetidos, realizados en cicloergómetro: Una revisión sistemática

Active Recovery effect in the peak power and the lactate, after repeated sprints protocols, executed in cycloergometer: A systematic review

Contenido principal del artículo

Sonia Viviana Anzola-Cruz

Resumen

Introducción: la recuperación activa ha sido utilizada en actividades físicas de alta demanda energética como los sprints repetidos en cicloergómetro. Objetivo: analizar el efecto de la recuperación activa en la potencia pico y el lactato, después de protocolos de sprints repetidos, realizados en cicloergómetro. Materiales: Las fuentes bibliográficas consultadas fueron bases de datos electrónicas, pubmed y web of science. Método: Se evaluó la calidad de los nueve artículos incluidos para lectura completa, utilizando la escala PEDro. Resultados: La efectividad de la recuperación activa para los sprints repetidos con menor disminución de la potencia pico se presentó en tres estudios con tiempos de recuperación de 20 min, 4 min y 45 sg, realizando 3 o 4 SR con porcentaje de cadencia de pedaleo de 40 y 28% VO2máx o entre 60 y 70 rpm. Los 9 estudios analizados no presentaron diferencias significativas (p > 0.05) en el comportamiento del lactato respecto a la recuperación activa con los protocolos que realizaron. No obstante, se presentan diferencias significativas (p = 0.001) entre la recuperación activa y otros métodos de recuperación. Conclusión: Se deben considerar las características de la población para los protocolos analizados con diferencias en los tiempos de recuperación activa y ejecución del sprint, así como la cantidad de sprints repetidos realizados y los porcentajes de cadencia de pedaleo.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability-Part II: recommendations for training. Sports Med. 2011;41(9):741-56. https://doi.org/10.2165/11590560-000000000-00000

Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc. 2005;37(5):759-67. https://doi.org/10.1249/01.MSS.0000161803.44656.3C

Morel B, Rouffet DM, Bishop DJ, Rota SJ, Hautier CA. Fatigue induced by repeated maximal efforts is specific to the rugby task performed. Int J Sports Sci Coach. 2015;10(1):11-20. https://doi.org/10.1260/1747-9541.10.1.11

da Silva JF, Guglielmo LGA, Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J Strength Cond Res. 2010;24(8):2115-21. ttps://doi.org/10.1519/JSC.0b013e3181e34794

Bogdanis GC, Nevill ME, Boobis LH, Lakomy HKA. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876-84. https://doi.org/10.1152/jappl.1996.80.3.876

Méndez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. Plos One. 2012;7(12). https://doi.org/10.1371/journal.pone.0051977

Guezennec CY. Oxidation rates, complex carbohydrates and exercise: practical recommendations. Sports Med. 1995;19(6):365-72. https://doi.org/10.2165/00007256-199519060-00001

Faude O, Meyer T, Urhausen A, Kindermann W. Recovery training in cyclists: ergometric, hormonal and psychometric findings. Scand J Med Sci Sports. 2009;19(3):433-41. https://doi.org/10.1111/j.1600-0838.2008.00795.x

Terrados Cepeda N, Calleja González J. Recuperación post-competición del deportista. Arch Medicina Deporte. 2010;27(138):281-90.

Connolly DA, Brennan KM, Lauzon CD. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise. J Sports Sci Med. 2003;2(2):47-51.

Valenzuela PL, de la Villa P, Ferragut C. Effect of two types of active recovery on fatigue and climbing performance. J Sports Sci Med. 2015;14(4):769-75.

Girard O, Brocherie F, Millet GP. Can analysis of performance and neuromuscular recoveries from repeated sprints shed more light on its fatigue-causing mechanisms? Front Physiol. 2015;6:5. https://doi.org/10.3389/fphys.2015.00005

Brown J, Glaister M. The interactive effects of recovery mode and duration on subsequent repeated sprint performance. J Strength Cond Res. 2014;28(3):651-60. https://doi org/10.1519/JSC.0b013e3182a1fe28

Wigernaes I, Hostmark AT, Kierulf P, Stromme SB. Active recovery reduces the decrease in circulating white blood cells after exercise. Int J Sports Med. 2000;21(8):608-12. https://doi.org/10.1055/s-2000-847827

Wahl P, Zinner C, Grosskopf C, Rossmann R, Bloch W, Mester J. Passive recovery is superior to active recovery during a high-intensity shock microcycle. J Strength Cond Res. 2013;27(5):1384-93. ttps://doi.org/10.1519/JSC.0b013e3182653cfa

Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, et al. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol Behav. 2016;155:224-30. https://doi.org/10.1016/j.physbeh.2015.12.021

López Chicharro J, Vicente Campos D, Cancino López J. Fisiología del entrenamiento aeróbico: una visión integrada. México: Editorial Médica Panamericana; 2013.

Toubekis AG, Adam GV, Douda HT, Antoniou PD, Douroundos II, Tokmakidis SP. Repeated sprint swimming performance after low- or high-intensity active and passive recoveries. J Strength Cond Res. 2011;25(1):109. https://doi.org/10.1519/JSC.0b013e3181b22a9a

Creer AR, Ricard MD, Conlee RK, Hoyt GL, Parcell AC. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. Int J Sports Med. 2004;25(2):92-8. https://doi.org/10.1055/s-2004-819945

McLellan TM, Jacobs I. Active recovery, endurance training, and the calculation of the individual anaerobic threshold. Med Sci Sports Exerc. 1989;21(5):586-92. https://doi.org/10.1249/00005768-198910000-00015

Matsuura R, Arimitsu T, Yunoki T, Kimura T, Yamanaka R, Yano T. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biol Sport. 2015;32(1):15-20. https://doi.org/10.5604/20831862.1125286

Bouhlel E, Gmada N, Debabi H, Tabka Z, Feki Y, Amri M. Respiratory gas exchanges, heart rate and blood lactate kinetics during and after the repetition of supramaximal individualized exercises in trained and untrained subjects. Sci Sports. 2005;20(3):111-8. https://doi.org/10.1016/j.scispo.2005.03.001

Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metabol. 2009;34(6):1048-54. https://doi.org/10.1139/H09-111

Baldari C, Di Luigi L, Silva SG, Gallotta MC, Emerenziani GP, Pesce C, et al. Relationship between optimal lactate removal power output and Olympic triathlon performance. J Strength Cond Res. 2007;21(4):1160-5. https://doi.org/10.1519/00124278-200711000-00030

Bishop D, Maxwell NS. Effects of active warm up on thermoregulation and intermittent-sprint performance in hot conditions. J Sci Med Sport. 2009;12(1):196-204. https://doi.org/10.1016/j.jsams.2007.05.013

Choi D, Cole KJ, Goodpaster BH, Fink WJ, Costill DL. Effect of passive and active recovery on the resynthesis of muscle glycogen. Med Sci Sports Exerc. 1994;26(8):992-6. https://doi.org/10.1249/00005768-199408000-00010

Noffal GJ, Lynn SK. Biomechanics of power in sport. Strength Cond J. 2012;34(6):20-4. https://doi.org/10.1519/SSC.0b013e-31826f013e

Triplett NT, Erickson TM, McBride JM. Power Associations with running speed. Strength Cond J. 2012;34(6):29-33. https://doi.org/10.1519/SSC.0b013e31826f0e0e

De Pauw K, Roelands B, Vanparijs J, Meeusen R. Effect of recovery interventions on cycling performance and pacing strategy in the heat. Int J Sports Physiol Perform. 2014;9(2):240-8. https://doi.org/10.1123/IJSPP.2012-036

Brughelli M, Van Leemputte M. Reliability of power output during eccentric sprint cycling. J Strength Cond Res. 2013;27(1):76-82. https://doi.org/10.1519/JSC.0b013e31824f2055

Bishop PA, Jones E, Woods AK. Recovery from training: a brief review. J Strength Cond Res.2008;22(3):1015-24. https://doi.org/10.1519/JSC.0b013e31816eb518

Bishop DJ. Fatigue during intermittent-sprint exercise. Clin Exp Pharmacol Physiol. 2012;39(9):836-41. https://doi.org/10.1111/j.1440-1681.2012.05735.x

Assadi H, Lepers R. Comparison of the 45-second/15-second intermittent running field testand the continuous treadmill test. Int J Sports Physiol Perform. 2012;7(3):277-84. https://doi.org/10.1123/ijspp.7.3.277

Urrutia G, Bonfill X. PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med Clin. 2010;135(11):507-11. https://doi.org/10.1016/j.medcli.2010.01.015

Warren DE, Jackson DC. Lactate metabolism in anoxic turtles: an integrative review. J Comp Physiol B. 2008;178(2):133-48. https://doi.org/10.1007/s00360-007-0212-1

Halson SL. Recovery techniques for athletes. Sports Sci Exch. 2013;26(120):1-6.37. Ohya T, Aramaki Y, Kitagawa K. Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise. Int J Sports Med.

;34(7):616-22. https://doi.org/10.1055/s-0032-1331717

Malone JK, Coughlan GF, Crowe L, Gissane GC, Caulfield B. The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes. Eur J Appl Physiol. 2012;112(7):2421-

https://doi.org/10.1007/s00421-011-2212-9

Spencer M, Dawson B, Goodman C, Dascombe B, Bishop D. Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol. 2008;103(5):545-52. https://doi.org/10.1007/s00421-008-0749-z

Spencer M, Bishop D, Dawson B, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38(8):1492-9. https://doi.org/10.1249/01.mss.0000228944.62776.a7

Spierer DK, Goldsmith R, Baran DA, Hryniewicz K, Katz SD. Effects of active vs. Passive recovery on work performed during serial supramaximal exercise tests. Int J Sports Med. 2004;25(2):109-14. https://doi.org/10.1055/s-2004-819954

Bielik V. Effect of different recovery modalities on anaerobic power in off-road cyclists. Biol Sport. 2010;27(1):59-63. https://doi. org/10.5604/20831862.907953

Chia YHM. Power recovery in the Wingate Anaerobic Test in girls and women following prior sprints of a short duration. Biol Sport. 2019;18(1):45-53.

Harbili S. The effect of different recovery duration on repeated anaerobic performance in elite cyclists. J Hum Kinet. 2015;49(1):171-8. https://doi.org/10.1515/hukin-2015-0119

Bielik V. Effect of different recovery modalities on anaerobic power in off-road cyclists. Med Sport. 2012;65(2):155-65.

Riganas CS, Papadopoulou Z, Psichas N, Skoufas D, Gissis I, Sampanis M, et al. The rate of lactate removal after maximal exercise: the effect of intensity during active recovery.J Sports Med Phys Fitness. 2015;55(10):1058-63.

Lopes FA, Panissa VL, Julio UF, Menegon EM, Franchini E. The effect of active recovery on power performance during the bench press exercise. J Hum Kinet. 2014;40:161-9. https://doi.org/10.2478/hukin-2014-0018

Citado por