Extracción de polifenoles de Cynara scolymus L., usando técnicas tradicionales y modernas. Una breve revisión

Extraction of polyphenols from Cynara scolymus L. using traditional and modern techniques.A short review

Contenido principal del artículo

María Carolina Otálora-Rodríguez
Oswaldo Eliécer Cárdenas-González


The nutritional value and health benefits of polyphenolic compounds presents in the artichoke, has emphasized the importance of extraction methods to obtain the highest recovery of this secondary metabo- lites. Polyphenols present in this herbaceous plant are represented by caffeoylquinic acid derivates and flavones apigenin, luteolin and their conjugates. This review highlights the theorical aspects and re- cent developments of traditional techniques such as maceration and soxhlet extraction, and modern techniques like ultrasound-assisted, microwave-assisted and accelerated solvent extraction, which have been replacing traditional ones in the obtaining of these compounds in the last 10 years.

Palabras clave:

Detalles del artículo

Biografía del autor/a (VER)

María Carolina Otálora-Rodríguez, Universidad de Boyacá

Química de Alimentos Doctora en Ciencia de los Alimentos. Grupo de investigación en ciencias básicas -Núcleo

Andrea Wilches-Torres, Universidad de Boyacá

Química de Alimentos Doctora en Ciencias-Química. Grupo de investigación en ciencias básicas -Núcleo

Oswaldo Eliécer Cárdenas-González, Universidad Pedagógica y Tecnológica de Colombia

Licenciado en Química y Biología. PhD. Ciencias Marinas Grupo de investigación en Química-Física Molecular y Modelamiento Computacional QUIMOL

Referencias (VER)

Abu-Reidah, I.M., Arráez-Román, D., Segura-Carretero, A. & Fernández-Gutiérrez, A. (2013). Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chemistry.141.2269-2277. https://doi.org/10.1016/j.foodchem.2013.04.066

Alarcón-Flores, M. I., Romero-González, R., Martínez Vidal, J. L. & Garrido Frenich, A. (2014). De- termination of phenolic compounds in artichoke, garlic and spinach by Ultra-High-Performance Liquid Chromatography coupled to Tandem Mass Spectrometry. Food Analytical Methods.7(10). 2095-2106. https://doi.org/10.1007/s12161-014-9852-4

Alupului, A., Calinescu, I. & Lavric, V. (2012). Microwave extraction of active principles from medicinal plants. UPB Scientific Bulletin, Series B: Chemistry and Materials Science.74(2). 129-142.

Alupului, A. & Lavric, V. (2012). Artificial neural network modelling of ultrasound and microwave ex- traction of bioactive constituents from medicinal plants. Revista de Chimie -Bucharest- Original Edition. 63(7).743-748.

Artichoke Crops Statistics. Accessed 01.06.2016

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Gha- foor, K., Norulaini, N.A.N. & Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering.117.426-436.


CCI (Colombia International Corporation). National Horticultural Plan. Bogotá, Colombia, 2006 <http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_28_PHN.pdf> Accessed 10.12.17.

Chemat, F. & Khan, M.K. (2011). Applications of ultrasound in food technology: processing, preserva- tion and extraction. Ultrasonics Sonochemistry. 18. 813- 835. https://doi.org/10.1016/j.ultsonch.2010.11.023

Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A. & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combina- tions, protocols and applications. A review. Ultrasonics Sonochemistry. 34. 540-560.


Claus, T., Maruyama, S.A., Palombini, S.V., Montanher, P.F., Bonafe, E.G., Santos Junior, O. O., Matsushi- ta, M. & Visentainer. J.V. (2015). Chemical characterization and use of artichoke parts for protection from oxidative stress in canola oil. Food Science and Technology, 61, 346-351. https://doi.org/10.1016/j.lwt.2014.12.050

Dabbou, S., Dabbou, S., Pandino, G., Lombardo, S., Mauromicale, G., Chahdoura, H., Gasco, L. & Helal, A. N. (2015). In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Scientia Horticulturae. 190. 128-136. de Falco, B., Incerti, G., Amato, M. & Lanzotti, V. (2015). Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phyto- chemisty Reviews.14.993-1018. https://doi.org/10.1007/s11101-015-9428-y

Domínguez-Rodríguez, G., Marina, M.L. & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants, Review article. Journal of Chromatography A. 1514. 1-15. https://doi.org/10.1016/j.chroma.2017.07.066

Espinosa, W., Garzón, L & Medina, O. (2017). Microwave-assisted extraction in dry fruit of andean spe- cies Vaccinium meridionale: Experimental conditions on the recovery of total polyphenols. Ciência E Agrotecnologia. 41 (6). 701 - 712. https://doi.org/10.1590/1413-70542017416016117

FAO (Food and Agricultural Organization of the United Nations). Artichoke Crops Statistics. Rome, Italy, 2013. <http://faostat3.fao.org/search/artichoke/E> Accessed 15. 06.17.

FAO (Food and Agricultural Organization of the United Nations). Food and Agricultural Commodi- ties Production, Rome, Italy, 2014. URL < http://faostat.fao.org/site/339/default.aspx > Accessed 28.12.17.

Falé, P.L., Ferreira, C., Rodrigues, A.M., Cleto, P., Madeira, P.J.A., Florêncio, M.H., Frazão, F.N. & Se- rralheiro, M.L.M. (2013). Antioxidant and anti-acetylcholinesterase activity of commercially avai- lable medicinal infusions after in vitro gastrointestinal digestion. Journal of Medicinal Plants Re- search.7.1370-1378. https://doi.org/10.5897/JMPR13.4438

Garbetta, A., Capotorto, I., Cardinali, A., D'Antuono, I., Linsalata. V., Pizzi, F. & Fiorenza Minervini, F. (2014). Antioxidant activity induced by main polyphenols present in edible artichoke heads: in- fluence of in vitro gastro-intestinal digestion. Journal of Functional Foods. 10. 456-464. https://doi.org/10.1016/j.jff.2014.07.019

Ghitescu, R.-E., Volf, I., Carausu, C., Bühlmann, A.-M., Gilca, I.A. & Popa, V.I. (2015). Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrasonics Sonochemistry. 22. 535 - 541. https://doi.org/10.1016/j.ultsonch.2014.07.013

Guo, X., Ye, X., Sun, Y., Wu, D., Wu, N., Hu, Y., & Chen, S. (2014). Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan. Journal of Agricultural and Food Chemistry, 62, 1088-1095. https://doi.org/10.1021/jf404717y

Kettle, A. (2013). Recent Advances in Pressurized Fluid Extraction. Special Issues. 31(11). 28-33.

Khoddami, A., Wilkes, M. A. & Roberts, T. H. (2013). Techniques for analysis of plant phenolic com- pounds. Molecules. 18(2). 2328 - 2375.


Leone, A., Tamborrino, A., Zagaria, R., Sabella, E. & Romaniello, R. (2015). Plant innovation in the olive oil extraction process: A comparison of efficiency and energy consumption between microwave treatment and traditional malaxation of olive pastes. Journal of Food Engineering. 146. 44-52. https://doi.org/10.1016/j.jfoodeng.2014.08.017

Li, Z., Smith, K.H. & Stevens, G.W. (2016). The use of environmentally sustainable bio-derived sol- vents in solvent extraction applications-A review. Chinese Journal of Chemical Engineering.24. 215-220. https://doi.org/10.1016/j.cjche.2015.07.021

Lutz, M., Henríquez, C. & Escobar, M. (2011). Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. Journal of Food Composition and Analysis. 24(1). 49-54. https://doi.org/10.1016/j.jfca.2010.06.001

Özbilgin, S., Sezgin-Bayindir, Z., Saltan, G. & Yüksel., N. (2015). In Vitro Phytoequivalency of Artichoke Extracts (Cynara scolymus L.) and Their Drug Products. Turkish Journal of Pharmaceutical Sciences. 12(2). 147-156. https://doi.org/10.5505/tjps.2015.92486

Panja, P. (2017). Green extraction methods of food polyphenols from vegetable materials. Review arti- cle. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2017.11.012

Passos, H., Freire, M. G. & Coutinho. J.A.P. (2014). Ionic liquids solutions as extractive solvents of va- lue-added compounds from biomass. Green Chemistry. 16. 4786-4815. https://doi.org/10.1039/C4GC00236A

Petropoulos, S.A., Pereira, C., Ntatsi, G., Danalatos, N., Barros, L. & Ferreira, I.C.F.R. (2017). Nutritio- nal value and chemical composition of Greek artichoke genotypes. Food Chemistry. https://doi. org/10.1016/j.foodchem.2017.01.159

Rabelo, R.S., Machado, M.T.C., Martínez, J. & Hubinger, M.D. (2016). Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. Journal of Food Enginee- ring. 178. 170 - 180. https://doi.org/10.1016/j.jfoodeng.2016.01.018

Rufino, M.S.M., Alves, R.E., Brito, E.S., Pérez-Jiménez, J., Saura-Calixto, F. & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry.121(4). 996-1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Saleh, I.A., Vinatoru, M., Mason, T.J. Abdel-Azim, N.S., Aboutabl, E.A. & Hammouda, F.M. (2016). A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrasonics Sonochemistry. 31. 330-336. https://doi.org/10.1016/j.ultsonch.2016.01.002

Salem, M.B., Affes, H., Athmouni, K., Ksouda, K., Dhouibi, R., Sahnoun, Z., Hammami, S. & Zeghal, K. M. (2017). Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scoly- mus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC. Evidence-Based Com- plementary and Alternative Medicine. https://doi.org/10.1155/2017/4951937

Soural, I., Balik, J., Vrchotova, N., Triska, J., Hornik, S., Curinova, P. & Sykora, J. (2015). Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules. 20.6093-6112.

Tian, Y., Xu, Z., Zheng, B. & Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of po- megranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry. 20. 202 - 208. https://doi.org/10.1016/j.ultsonch.2012.07.010

Vamanu, E., Vamanu, A., Ni, S. & Colceriu, S. (2011). Antioxidant and Antimicrobial Activities of Etha- nol Extracts of Cynara Scolymus (Cynarae folium, Asteraceae Family) Tropical. Journal of Pharma- ceutical Research. 10(6). 777-783. https://doi.org/10.4314/tjpr.v10i6.11

Veggi, P.C., Martinez, J., & Meireles, M.A.A. (2013). Microwave-Assisted Extraction for Bioactive Com- pounds, Springer US, Boston, MA.

Vieiteza, I., Maceiras, L., Jachmanián, I. & S. Alborés, S. (2018). Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids. 133. 58-64. https://doi.org/10.1016/j.supflu.2017.09.025

Zhang, J., Shao, M., Chen, J.,Cheng, S. & Lu, S. (2008). Study on extraction technology of polyphonel from artichoke by microwave assistant. Science and Technology of Food Industry. http://en.cnki. com.cn/Article_en/CJFDTOTAL-SPKJ200811053.htm

Zuorro, A., Maffei, G. & Lavecchia. R. (2014). Effect of solvent type and extraction conditions on the recovery of Phenolic compounds from artichoke waste. Chemical Engineering Transac- tions.39.463-468.

Zuorro, A., Maffei, G. & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production.111. 279-284. https://doi.org/10.1016/j.jclepro.2015.06.011

Citado por