Extracción de polifenoles de Cynara scolymus L., usando técnicas tradicionales y modernas. Una breve revisión

Extraction of polyphenols from Cynara scolymus L. using traditional and modern techniques.A short review

Contenido principal del artículo

María Carolina Otálora-Rodríguez Universidad de Boyacá
Oswaldo Eliécer Cárdenas-González Universidad Pedagógica y Tecnológica de Colombia

Resumen

The nutritional value and health benefits of polyphenolic compounds presents in the artichoke, has emphasized the importance of extraction methods to obtain the highest recovery of this secondary metabo- lites. Polyphenols present in this herbaceous plant are represented by caffeoylquinic acid derivates and flavones apigenin, luteolin and their conjugates. This review highlights the theorical aspects and re- cent developments of traditional techniques such as maceration and soxhlet extraction, and modern techniques like ultrasound-assisted, microwave-assisted and accelerated solvent extraction, which have been replacing traditional ones in the obtaining of these compounds in the last 10 years.

Palabras clave:

Detalles del artículo

Biografía del autor/a (VER)

María Carolina Otálora-Rodríguez, Universidad de Boyacá

Química de Alimentos Doctora en Ciencia de los Alimentos. Grupo de investigación en ciencias básicas -Núcleo

Andrea Wilches-Torres, Universidad de Boyacá

Química de Alimentos Doctora en Ciencias-Química. Grupo de investigación en ciencias básicas -Núcleo

Oswaldo Eliécer Cárdenas-González, Universidad Pedagógica y Tecnológica de Colombia

Licenciado en Química y Biología. PhD. Ciencias Marinas Grupo de investigación en Química-Física Molecular y Modelamiento Computacional QUIMOL

Referencias (VER)

Abu-Reidah, I.M., Arráez-Román, D., Segura-Carretero, A. & Fernández-Gutiérrez, A. (2013). Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chemistry.141.2269-2277. https://doi.org/10.1016/j.foodchem.2013.04.066

Alarcón-Flores, M. I., Romero-González, R., Martínez Vidal, J. L. & Garrido Frenich, A. (2014). De- termination of phenolic compounds in artichoke, garlic and spinach by Ultra-High-Performance Liquid Chromatography coupled to Tandem Mass Spectrometry. Food Analytical Methods.7(10). 2095-2106. https://doi.org/10.1007/s12161-014-9852-4

Alupului, A., Calinescu, I. & Lavric, V. (2012). Microwave extraction of active principles from medicinal plants. UPB Scientific Bulletin, Series B: Chemistry and Materials Science.74(2). 129-142.

Alupului, A. & Lavric, V. (2012). Artificial neural network modelling of ultrasound and microwave ex- traction of bioactive constituents from medicinal plants. Revista de Chimie -Bucharest- Original Edition. 63(7).743-748.

Artichoke Crops Statistics. Accessed 01.06.2016

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Gha- foor, K., Norulaini, N.A.N. & Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering.117.426-436.

https://doi.org/10.1016/j.jfoodeng.2013.01.014

CCI (Colombia International Corporation). National Horticultural Plan. Bogotá, Colombia, 2006 <http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_28_PHN.pdf> Accessed 10.12.17.

Chemat, F. & Khan, M.K. (2011). Applications of ultrasound in food technology: processing, preserva- tion and extraction. Ultrasonics Sonochemistry. 18. 813- 835. https://doi.org/10.1016/j.ultsonch.2010.11.023

Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A. & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combina- tions, protocols and applications. A review. Ultrasonics Sonochemistry. 34. 540-560.

https://doi.org/10.1016/j.ultsonch.2016.06.035

Claus, T., Maruyama, S.A., Palombini, S.V., Montanher, P.F., Bonafe, E.G., Santos Junior, O. O., Matsushi- ta, M. & Visentainer. J.V. (2015). Chemical characterization and use of artichoke parts for protection from oxidative stress in canola oil. Food Science and Technology, 61, 346-351. https://doi.org/10.1016/j.lwt.2014.12.050

Dabbou, S., Dabbou, S., Pandino, G., Lombardo, S., Mauromicale, G., Chahdoura, H., Gasco, L. & Helal, A. N. (2015). In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Scientia Horticulturae. 190. 128-136. de Falco, B., Incerti, G., Amato, M. & Lanzotti, V. (2015). Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phyto- chemisty Reviews.14.993-1018. https://doi.org/10.1007/s11101-015-9428-y

Domínguez-Rodríguez, G., Marina, M.L. & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants, Review article. Journal of Chromatography A. 1514. 1-15. https://doi.org/10.1016/j.chroma.2017.07.066

Espinosa, W., Garzón, L & Medina, O. (2017). Microwave-assisted extraction in dry fruit of andean spe- cies Vaccinium meridionale: Experimental conditions on the recovery of total polyphenols. Ciência E Agrotecnologia. 41 (6). 701 - 712. https://doi.org/10.1590/1413-70542017416016117

FAO (Food and Agricultural Organization of the United Nations). Artichoke Crops Statistics. Rome, Italy, 2013. <http://faostat3.fao.org/search/artichoke/E> Accessed 15. 06.17.

FAO (Food and Agricultural Organization of the United Nations). Food and Agricultural Commodi- ties Production, Rome, Italy, 2014. URL < http://faostat.fao.org/site/339/default.aspx > Accessed 28.12.17.

Falé, P.L., Ferreira, C., Rodrigues, A.M., Cleto, P., Madeira, P.J.A., Florêncio, M.H., Frazão, F.N. & Se- rralheiro, M.L.M. (2013). Antioxidant and anti-acetylcholinesterase activity of commercially avai- lable medicinal infusions after in vitro gastrointestinal digestion. Journal of Medicinal Plants Re- search.7.1370-1378. https://doi.org/10.5897/JMPR13.4438

Garbetta, A., Capotorto, I., Cardinali, A., D'Antuono, I., Linsalata. V., Pizzi, F. & Fiorenza Minervini, F. (2014). Antioxidant activity induced by main polyphenols present in edible artichoke heads: in- fluence of in vitro gastro-intestinal digestion. Journal of Functional Foods. 10. 456-464. https://doi.org/10.1016/j.jff.2014.07.019

Ghitescu, R.-E., Volf, I., Carausu, C., Bühlmann, A.-M., Gilca, I.A. & Popa, V.I. (2015). Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrasonics Sonochemistry. 22. 535 - 541. https://doi.org/10.1016/j.ultsonch.2014.07.013

Guo, X., Ye, X., Sun, Y., Wu, D., Wu, N., Hu, Y., & Chen, S. (2014). Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan. Journal of Agricultural and Food Chemistry, 62, 1088-1095. https://doi.org/10.1021/jf404717y

Kettle, A. (2013). Recent Advances in Pressurized Fluid Extraction. Special Issues. 31(11). 28-33.

Khoddami, A., Wilkes, M. A. & Roberts, T. H. (2013). Techniques for analysis of plant phenolic com- pounds. Molecules. 18(2). 2328 - 2375.

https://doi.org/10.3390/molecules18022328

Leone, A., Tamborrino, A., Zagaria, R., Sabella, E. & Romaniello, R. (2015). Plant innovation in the olive oil extraction process: A comparison of efficiency and energy consumption between microwave treatment and traditional malaxation of olive pastes. Journal of Food Engineering. 146. 44-52. https://doi.org/10.1016/j.jfoodeng.2014.08.017

Li, Z., Smith, K.H. & Stevens, G.W. (2016). The use of environmentally sustainable bio-derived sol- vents in solvent extraction applications-A review. Chinese Journal of Chemical Engineering.24. 215-220. https://doi.org/10.1016/j.cjche.2015.07.021

Lutz, M., Henríquez, C. & Escobar, M. (2011). Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. Journal of Food Composition and Analysis. 24(1). 49-54. https://doi.org/10.1016/j.jfca.2010.06.001

Özbilgin, S., Sezgin-Bayindir, Z., Saltan, G. & Yüksel., N. (2015). In Vitro Phytoequivalency of Artichoke Extracts (Cynara scolymus L.) and Their Drug Products. Turkish Journal of Pharmaceutical Sciences. 12(2). 147-156. https://doi.org/10.5505/tjps.2015.92486

Panja, P. (2017). Green extraction methods of food polyphenols from vegetable materials. Review arti- cle. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2017.11.012

Passos, H., Freire, M. G. & Coutinho. J.A.P. (2014). Ionic liquids solutions as extractive solvents of va- lue-added compounds from biomass. Green Chemistry. 16. 4786-4815. https://doi.org/10.1039/C4GC00236A

Petropoulos, S.A., Pereira, C., Ntatsi, G., Danalatos, N., Barros, L. & Ferreira, I.C.F.R. (2017). Nutritio- nal value and chemical composition of Greek artichoke genotypes. Food Chemistry. https://doi. org/10.1016/j.foodchem.2017.01.159

Rabelo, R.S., Machado, M.T.C., Martínez, J. & Hubinger, M.D. (2016). Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. Journal of Food Enginee- ring. 178. 170 - 180. https://doi.org/10.1016/j.jfoodeng.2016.01.018

Rufino, M.S.M., Alves, R.E., Brito, E.S., Pérez-Jiménez, J., Saura-Calixto, F. & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry.121(4). 996-1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Saleh, I.A., Vinatoru, M., Mason, T.J. Abdel-Azim, N.S., Aboutabl, E.A. & Hammouda, F.M. (2016). A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrasonics Sonochemistry. 31. 330-336. https://doi.org/10.1016/j.ultsonch.2016.01.002

Salem, M.B., Affes, H., Athmouni, K., Ksouda, K., Dhouibi, R., Sahnoun, Z., Hammami, S. & Zeghal, K. M. (2017). Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scoly- mus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC. Evidence-Based Com- plementary and Alternative Medicine. https://doi.org/10.1155/2017/4951937

Soural, I., Balik, J., Vrchotova, N., Triska, J., Hornik, S., Curinova, P. & Sykora, J. (2015). Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules. 20.6093-6112.

Tian, Y., Xu, Z., Zheng, B. & Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of po- megranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry. 20. 202 - 208. https://doi.org/10.1016/j.ultsonch.2012.07.010

Vamanu, E., Vamanu, A., Ni, S. & Colceriu, S. (2011). Antioxidant and Antimicrobial Activities of Etha- nol Extracts of Cynara Scolymus (Cynarae folium, Asteraceae Family) Tropical. Journal of Pharma- ceutical Research. 10(6). 777-783. https://doi.org/10.4314/tjpr.v10i6.11

Veggi, P.C., Martinez, J., & Meireles, M.A.A. (2013). Microwave-Assisted Extraction for Bioactive Com- pounds, Springer US, Boston, MA.

Vieiteza, I., Maceiras, L., Jachmanián, I. & S. Alborés, S. (2018). Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids. 133. 58-64. https://doi.org/10.1016/j.supflu.2017.09.025

Zhang, J., Shao, M., Chen, J.,Cheng, S. & Lu, S. (2008). Study on extraction technology of polyphonel from artichoke by microwave assistant. Science and Technology of Food Industry. http://en.cnki. com.cn/Article_en/CJFDTOTAL-SPKJ200811053.htm

Zuorro, A., Maffei, G. & Lavecchia. R. (2014). Effect of solvent type and extraction conditions on the recovery of Phenolic compounds from artichoke waste. Chemical Engineering Transac- tions.39.463-468.

Zuorro, A., Maffei, G. & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production.111. 279-284. https://doi.org/10.1016/j.jclepro.2015.06.011

Citado por