Receptores del hospedero implicados en la invasión del merozoito de Plasmodium falciparum: Revisión

Host receptors involved in the invasion of Plasmodium falciparum merozoite: Review

Contenido principal del artículo

Jessica Stephanie Molina Franky
Alida Marcela Gómez Rodriguez
César Mauricio Reyes Santofimio
David Fernando Plaza Gutiérrez

Resumen

Introducción. La malaria es un problema de salud pública a nivel mundial y es causada por 5 especies de parásitos apicomplejos del género Plasmodium. La invasión exitosa de los merozoítos al glóbulo rojo es una etapa fundamental en el ciclo de vida del parásito, el cual usa un variado repertorio de ligandos que interactúan de forma específica con receptores presentes en la membrana del glóbulo rojo. Objetivo. Revisar las características moleculares y estructurales de los receptores expresados en la superficie de los glóbulos rojos, implicados en el proceso de invasión del merozoito de Plasmodium falciparum. Método. Revisión descriptiva sobre las características moleculares y estructurales de los receptores de la superficie del glóbulo rojo, los cuales juegan un papel fundamental durante la invasión del merozoíto de Plasmodium falciparum. Esta revisión empezó por la búsqueda de literatura publicada hasta el año 2019 en bases de datos electrónicas, especializadas en la divulgación de investigación biomédica. Se encontraron 127 documentos, de los cuales se seleccionaron 111 y se excluyeron 33 por no cumplir los criterios de inclusión; en total, se analizaron 78 referencias. Conclusión. En esta revisión se resumieron las características moleculares y estructurales de los receptores presentes en el glóbulo rojo importantes en el proceso de invasión del merozoito de P. falciparum. También, se resaltó la importancia de elucidar las diferentes vías de invasión del parásito y así, poder desarrollar alternativas profilácticas o terapéuticas que conduzcan a mitigar o eliminar la malaria

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

World Health Organization. World malaria report 2018. 2018.

Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016; 95(6Suppl):15-34. https://doi.org/10.4269/ajtmh.16-0141

Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev. 2008;108(9):3656-705. https://doi.org/10.1021/cr068407v

Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe. 2017;22(2):232-45. https://doi.org/10.1016/j.chom.2017.07.003

Baum J, Richard D, Riglar DT. Malaria Parasite Invasion: Achieving Superb Resolution. Cell Host Microbe. 2017;21(3):294-6. https://doi.org/10.1016/j.chom.2017.02.006

Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016;32(4):284-95. https://doi.org/10.1016/j.pt.2015.12.007

W Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLOS Pathog. 2015;11(2):1-25. https://doi.org/10.1371/journal.ppat.1004670

Karunamoorthi K. Malaria vaccine: a future hope to curtail the global malaria burden. Int J Prev Med. 2014;5(5):529-38. PMCID:PMC4050672.

Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. van Ooij C, editor. FEMS Microbiol Rev. 2016;40(3):343-72. https://doi.org/10.1093/femsre/fuw001

Gaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. 2004;34(13-14):1413-29. https://doi.org/10.1016/j.ijpara.2004.10.010

Pasvol G. How many pathways for invasion of the red blood cell by the malaria parasite? Trends Parasitol. 2003;19(10):430-2. https://doi.org/10.1016/j.pt.2003.08.005

Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol. 2010;40(10):1155-61. https://doi.org/10.1016/j.ijpara.2010.04.008

Goel VK, Li X, Chen H, Liu S-C, Chishti AH, Oh SS. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci. 2003;100(9):5164-9. https://doi.org/10.1073/pnas.0834959100

Baldwin MR, Li X, Hanada T, Liu S-C, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11. https://doi.org/10.1182/blood-2014-11-611707

Li X, Marinkovic M, Russo C, McKnight CJ, Coetzer TL, Chishti AH. Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol. 2012;183(1):23-31. https://doi.org/10.1016/j.molbiopara.2012.01.002

Rayner JC, Galinski MR, Ingravallo P, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci. 2000;97(17):9648-53. https://doi.org/10.1073/pnas.160469097

Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites. Infect Immun. 2011;79(3):1107-17. https://doi.org/10.1128/IAI.01021-10

Gilson PR, Crabb BS. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol. 2009;39(1):91-6. https://doi.org/10.1016/j.ijpara.2008.09.007

Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. octubre de 2016;167(3):610-24. https://doi.org/10.1016/j.cell.2016.07.055

Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15(8):479-91. https://doi.org/10.1038/nrmicro.2017.47

Bermúdez M, Moreno-Pérez DA, Arévalo-Pinzón G, Curtidor H, Patarroyo MA. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J. 2018 ;17(1). https://doi.org/10.1186/s12936-018-2456-5

Aoki T. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins. Membranes. 2017;7(4):56. https://doi.org/10.3390/membranes7040056

Tomita M, Marchesi VT. Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci. 1975;72(8):2964-8. https://doi.org/10.1073/pnas.72.8.2964

Hassan SN, Thirumulu Ponnuraj K, Mohamad S, Hassan R, Wan Ab Rahman WS. Molecular Detection of Glycophorins A and B Variant Phenotypes and their Clinical Relevance. Transfus Med Rev. 2019;33(2):118-24. https://doi.org/10.1016/j.tmrv.2019.02.003

Duraisingh MT, Maier AG, Triglia T, Cowman AF. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc Natl Acad Sci. 2003;100(8):4796-801. https://doi.org/10.1073/pnas.0730883100.

Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033

Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ. Biochemical Analysis of the Plasmodium falciparum Erythrocyte-binding Antigen-175 (EBA175)-Glycophorin-A Interaction: implications for vaccine design. J Biol Chem. 2013;288(45):32106-17. https://doi.org/10.1074/jbc.M113.484840

Sim BKL, Chitnis CE, Wasniowska K, Millert LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264:4. https://doi.org/10.1126/science.8009226

Jaskiewicz E, Jodłowska M, Kaczmarek R, Zerka A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasit Vectors. 2019;12(1):317. https://doi.org/10.1186/s13071-019-3575-8

Narum DL, Haynes JD, Fuhrmann S, Moch K, Liang H, Hoffman SL, et al. Antibodies against the Plasmodium falciparum Receptor Binding Domain of EBA-175 Block Invasion Pathways That Do Not Involve Sialic Acids. Infect Immun. 2000;68(4):1964-6. https://doi.org/10.1128/IAI.68.4.1964-1966.2000

Ohas EA, Adams JH, Waitumbi JN, Orago ASS, Barbosa A, Lanar DE, et al. Measurement of Antibody Levels against Region II of the Erythrocyte-Binding Antigen 175 of Plasmodium falciparum in an Area of Malaria Holoendemicity in Western Kenya. Infect Immun. 2004;72(2):735-41. https://doi.org/10.1128/IAI.72.2.735-741.2004

El Sahly HM, Patel SM, Atmar RL, Lanford TA, Dube T, Thompson D, et al. Safety and Immunogenicity of a Recombinant Nonglycosylated Erythrocyte Binding Antigen 175 Region II Malaria Vaccine in Healthy Adults Living in an Area Where Malaria Is Not Endemic. Clin Vaccine Immunol. 2010;17(10):1552-9. https://doi.org/10.1128/CVI.00082-10

Koram KA, Adu B, Ocran J, Karikari YS, Adu-Amankwah S, Ntiri M, et al. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study. PLOS ONE. 2016;11(9):e0163066. https://doi.org/10.1371/journal.pone.0163066

Salamanca DR, Gómez M, Camargo A, Cuy-Chaparro L, Molina-Franky J, Reyes C, et al. Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Front Microbiol. 2019;10:2712. https://doi.org/10.3389/fmicb.2019.02712

Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum : new and old: Erythrocyte invasion receptors for Plasmodium falciparum. Transfus Med. 2016;26(2):77-88. https://doi.org/10.1111/tme.12280

Willemetz A, Nataf J, Peyrard T, Arnaud L. A novel GYPB-A-B hybrid gene responsible for Ss and MN typing discrepancies. Transfusion. 2015;55(11):2620-3. https://doi.org/10.1111/trf.13216

Mayer DCG, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci. 2009;106(13):5348-52. https://doi.org/10.1073/pnas.0900878106

Salinas ND, Paing MM, Tolia NH. Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity. mBio. 2014;5(5):e01606-14. https://doi.org/10.1128/mBio.01606-14

Reid ME, Takakuwa Y, Conboy J, Mohandas N. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood. 1990; 75(11)2229-34. PMID: 2346783.

Lobo C-A. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood. 2003;101(11):4628-31. https://doi.org/10.1182/blood-2002-10-3076

Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2003;9(1):87-92. https://doi.org/10.1038/nm807

Patel SS, King CL, Mgone CS, Kazura JW, Zimmerman PA. Glycophorin C (Gerbich antigen blood group) and band 3 polymorphisms in two malaria holoendemic regions of Papua New Guinea. Am J Hematol. 2004;75(1):1-5. https://doi.org/10.1002/ajh.10448

Maier AG, Baum J, Smith B, Conway DJ, Cowman AF. Polymorphisms in Erythrocyte Binding Antigens 140 and 181 Affect Function and Binding but Not Receptor Specificity in P11lasmodium falciparum. Infect Immun. 2009;77(4):1689-99. https://doi.org/10.1128/IAI.01331-08

Thompson JK, Triglia T, Reed MB, Cowman AF. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes: A P. falciparum ligand that binds a sialylated receptor on erythrocytes. Mol Microbiol. 2001;41(1):47-58. https://doi.org/10.1046/j.1365-2958.2001.02484.x

Kang S, Kumanogoh A. Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol. 2013;24(3):163-71. https://doi.org/10.1016/j.semcdb.2012.09.008

Xie J, Wang H. Semaphorin 7A as a potential immune regulator and promising therapeutic target in rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):10. https://doi.org/10.1186/s13075-016-1217-5

Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, et al. Structural basis for semaphorin signalling through the plexin receptor. Nature. 2010;467(7319):1123-7. https://doi.org/10.1038/nature09473

Czopik AK, Bynoe MS, Palm N, Raine CS, Medzhitov R. Semaphorin 7A Is a Negative Regulator of T Cell Responses. Immunity. 2006;24(5):591-600. https://doi.org/10.1016/j.immuni.2006.03.013

Jeroen Pasterkamp R, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003;424(6947):398-405. https://doi.org/10.1038/nature01790

Holmes S, Downs A-M, Fosberry A, Hayes PD, Michalovich D, Murdoch P, et al. Sema7A is a Potent Monocyte Stimulator. Scand J Immunol. 2002;56(3):270-5. https://doi.org/10.1046/j.1365-3083.2002.01129.x

Liu H, Juo ZS, Shim AH-R, Focia PJ, Chen X, Garcia KC, et al. Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1. Cell. 2010;142(5):749-61. https://doi.org/10.1016/j.cell.2010.07.040

Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, et al. Semaphorin-7A Is an Erythrocyte Receptor for P. falciparum Merozoite-Specific TRAP Homolog, MTRAP. PLoS Pathog. 2012;8(11):1-13. https://doi.org/10.1371/journal.ppat.1003031

Kato K, Mayer DCG, Singh S, Reid M, Miller LH. Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci. 2005;102(15):5552-7. https://doi.org/10.1073/pnas.0501594102

Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706-18. https://doi.org/10.1046/j.1365-2958.2000.02175.x

Hodder AN, Crewther PE, Matthew MLSM, Reid GE, Moritz RL, Simpson RJ, et al. The Disulfide Bond Structure of Plasmodium Apical Membrane Antigen-1. J Biol Chem. 1996;271(46):29446-52. https://doi.org/10.1074/jbc.271.46.29446

Gilberger T-W, Thompson JK, Reed MB, Good RT, Cowman AF. The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J Cell Biol. 2003;162(2):317-27. https://doi.org/10.1083/jcb.200301046

Lanzillotti R, Coetzer TL. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein. Malar J. 2006;5(1):100. https://doi.org/10.1186/1475-2875-5-100

Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A Novel Erythrocyte Binding Antigen-175 Paralogue from Plasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. J Biol Chem. 2003;278(16):14480-6. https://doi.org/10.1074/jbc.M211446200

Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481-90. https://doi.org/10.1093/jb/mvv127

Ochrietor JD, Moroz TP, van Ekeris L, Clamp MF, Jefferson SC, deCarvalho AC, et al. Retina-Specific Expression of 5A11/Basigin-2, a Member of the Immunoglobulin Gene Superfamily. Investig Opthalmology Vis Sci. 2003;44(9):4086. https://doi.org/10.1167/iovs.02-0995

Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics: CD147-cyclophilin interactions. Clin Exp Immunol. 2010;160(3):305-17. https://doi.org/10.1111/j.1365-2249.2010.04115.x

Heller M, von der Ohe M, Kleene R, Mohajeri MH, Schachner M. The immunoglobulin-superfamily molecule basigin is a binding protein for oligomannosidic carbohydrates: an anti-idiotypic approach: Basigin binds to oligomannosidic glycans. J Neurochem. 2003;84(3):557-65. https://doi.org/10.1046/j.1471-4159.2003.01537.x

Rodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: a novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PloS One. 2008;3(10):1-8. https://doi.org/10.1371/journal.pone.0003300

Arévalo-Pinzón G, Curtidor H, Muñoz M, Patarroyo MA, Bermudez A, Patarroyo ME. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine. 2012;30(3):637-46. https://doi.org/10.1016/j.vaccine.2011.11.012

Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature. 2014;515(7527):427-30. https://doi.org/10.1038/nature13715

Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci. 2015;112(4):1179-84. https://doi.org/10.1073/pnas.1415466112

Ntege EH, Arisue N, Ito D, Hasegawa T, Palacpac NMQ, Egwang TG, et al. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine. 2016;34(46):5612-22. https://doi.org/10.1016/j.vaccine.2016.09.028

Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature. 2019;565(7737):118-21. https://doi.org/10.1038/s41586-018-0779-6

Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016;20(1):60-71. https://doi.org/10.1016/j.chom.2016.06.004

Bustamante LY, Bartholdson SJ, Crosnier C, Campos MG, Wanaguru M, Nguon C, et al. A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine. 2013;31(2):373-9. https://doi.org/10.1016/j.vaccine.2012.10.106

Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight. 2017;2(21): e96381. https://doi.org/10.1172/jci.insight.96381

Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites. PLoS Pathog. 2008;4(7):1-15. https://doi.org/10.1371/journal.ppat.1000104

Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 2003;22(5):1047-57. https://doi.org/10.1093/emboj/cdg096

Aniweh Y, Gao X, Gunalan K, Preiser PR. PfRH2b specific monoclonal antibodies inhibit merozoite invasion: PfRH2b involves in Ca 2+ signalling during merozoite invasion. Mol Microbiol. 2016;102(3):386-404. https://doi.org/10.1111/mmi.13468

Sahar T, Reddy KS, Bharadwaj M, Pandey AK, Singh S, Chitnis CE, et al. Plasmodium falciparum Reticulocyte Binding-Like Homologue Protein 2 (PfRH2) Is a Key Adhesive Molecule Involved in Erythrocyte Invasion. PLoS ONE. 2011;6(2):1-10. https://doi.org/10.1371/journal.pone.0017102

Gao X, Gunalan K, Yap SSL, Preiser PR. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun. 2013;4(1):1-11. https://doi.org/10.1038/ncomms3862

Cockburn IA, Mackinnon MJ, O’Donnell A, Allen SJ, Moulds JM, Baisor M, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci. 2004;101(1):272-7. https://doi.org/10.1073/pnas.0305306101

Furtado PB, Huang CY, Ihyembe D, Hammond RA, Marsh HC, Perkins SJ. The Partly Folded Back Solution Structure Arrangement of the 30 SCR Domains in Human Complement Receptor Type 1 (CR1) Permits Access to its C3b and C4b Ligands. J Mol Biol. 2008;375(1):102-18. https://doi.org/10.1016/j.jmb.2007.09.085

Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci. 2010;107(40):17327-32. https://doi.org/10.1073/pnas.1008151107

Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, et al. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum. PLoS Pathog. 2010;6(6):1-13. https://doi.org/10.1371/journal.ppat.1000968

Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, et al. Using Mutagenesis and Structural Biology to Map the Binding Site for the Plasmodium falciparum Merozoite Protein PfRh4 on the Human Immune Adherence Receptor. J Biol Chem. 2014;289(1):450-63. https://doi.org/10.1074/jbc.M113.520346

Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun Rev. 2008;7(6):457-62. https://doi.org/10.1016/j.autrev.2008.03.017

Zhang D, Kiyatkin A, Bolin JT, Low PS. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood. 2000;96(9):2925-33. PMID: 11049968

Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science. 2015; 350(6261):680-4. https://doi.org/10.1126/science.aaa4335

Lewis IA, Campanella ME, Markley JL, Low PS. Role of band 3 in regulating metabolic flux of red blood cells. Proc Natl Acad Sci. 2009;106(44):18515-20. https://doi.org/10.1073/pnas.0905999106

Tanner MJA, Martin PG, High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988;256(3):703-12. https://doi.org/10.1042/bj2560703

Lux SE, John KM, Kopito RR, Lodish HF. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci. 1989;86(23):9089-93. https://doi.org/10.1073/pnas.86.23.9089

Baldwin M, Yamodo I, Ranjan R, Li X, Mines G, Marinkovic M, et al. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3–MSP1 complex. Biochim Biophys Acta BBA - Mol Cell Res. 2014;1843(12):2855-70. https://doi.org/10.1016/j.bbamcr.2014.08.008

Kariuki MM, Li X, Yamodo I, Chishti AH, Oh SS. Two Plasmodium falciparum merozoite proteins binding to erythrocyte band 3 form a direct complex. Biochem Biophys Res Commun. 2005;338(4):1690-5. https://doi.org/10.1016/j.bbrc.2005.10.154

Holder AA, Freeman RR. The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J Exp Med. 1984;160(2):624-9. https://doi.org/10.1084/jem.160.2.624

McBride JS, Heidrich H-G. Fragments of the polymorphic Mr 185 000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol. 1987;23(1):71-84. https://doi.org/10.1016/0166-6851(87)90189-7

Citado por

Artículos más leídos del mismo autor/a